首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以四川冕宁氟碳铈矿精矿为研究对象,提出了一种减少氟碳铈矿中Ce(Ⅲ)的氧化来提高稀土浸出率的新工艺。通过控制焙烧温度和焙烧助剂NaHCO_3用量,利用焙烧助剂分解产物Na_2CO_3熔融包覆矿物以减少Ce(Ⅲ)的氧化,经水洗、酸浸过程,促使氟碳铈矿中铈进入酸浸液而减少留在酸浸渣,从而实现铈的浸出回收,提高总的稀土浸出率。得到的优化工艺条件为:NaHCO_3与氟碳铈矿质量比为40%,于900℃焙烧2 h,水洗温度50℃,水洗液固比10∶1,盐酸浓度为2 mol·L~(-1),酸浸液固比为15∶1,温度75℃酸浸2 h。在此条件下,总稀土浸出率达93.23%,铈的浸出率为87.43%。  相似文献   

2.
以混合型稀土精矿为研究对象,采用HCl-H2O2溶液浸出氟碳铈矿,达到独居石与氟碳铈矿分离的目的。考察了焙烧温度、盐酸浓度、液固比、双氧水用量、浸出温度、浸出时间等对稀土精矿浸出率的影响规律,并得出最佳浸出工艺条件为:焙烧温度:600℃,焙烧时间:2 h,盐酸浓度:6 mol·L-1,液固比:30∶1,双氧水用量:10 m L,浸出温度:90℃,浸出时间:90 min。通过此实验条件,稀土精矿中氟碳铈矿的浸出率达到了98.69%,使稀土精矿中的氟碳铈矿大部分进入溶液中,达到与独居石分离的目的,为浸出氟碳铈矿的工艺提供新思路。  相似文献   

3.
采用微波加热技术氯化分解四川冕宁60%品位的氟碳铈精矿(含氟碳铈矿57.78%,氟碳钙铈矿33.86%),利用无水MgCl2作为氯化剂,活性炭作为辅助剂,实现了微波场中空气气氛下氟碳铈精矿的无氧化焙烧分解。通过热重-差热分析(TG-DSC)、 X射线衍射(XRD)、扫描电镜(SEM)和能谱(EDS)分析等检测手段,阐明了微波氯化分解氟碳铈精矿的无氧化反应机理,得到了主要以氯氧化稀土(REOCl)和氟化镁(MgF2)为主的微波焙烧矿。通过实验,确定了微波氯化分解工艺的最佳参数:微波功率1200 W,焙烧温度800℃,焙烧时间30 min,矿盐比(氟碳铈精矿∶无水氯化镁∶活性碳)为1∶0.25∶0.18。在此条件下,氟碳铈精矿的分解率为96.23%,酸浸液中氟的浸出率只有23.35%,铈的氧化率小于0.6%。  相似文献   

4.
研究了烧碱溶液连续焙烧分解包头混合稀土精矿综合提取有价元素制备氯化稀土的工艺。对混合稀土精矿和烧碱溶液的混合矿浆进行了不同温度的连续焙烧,研究了焙烧温度对稀土分解率、铈氧化率和氟、磷溶出行为的影响,考察了该工艺对不同稀土品位精矿的适应性。结果表明:使用56%品位的稀土精矿,300℃以上焙烧时稀土分解率达到97%以上,铈的氧化率达到93%以上。提出了包头混合稀土矿液碱连续焙烧分解、水洗除氟、盐酸分步溶解、萃取回收磷和铁,中和除钍后得到氯化稀土溶液的资源综合提取工艺,精矿中稀土、氟、磷、钙、铁和钍得到综合回收。  相似文献   

5.
根据Al3+与F-能形成稳定的络合离子[AlF6]3-,采用HNO3-Al(NO3)3溶液络合浸出包头混合稀土精矿中的氟碳铈矿。热力学分析结果表明:HNO3-Al(NO3)3体系对稀土精矿浸出反应为自发过程。考察了HNO3浓度、Al(NO3)3浓度、液固比、搅拌速度、温度、搅拌时间这些因素对稀土精矿浸出的影响。实验结果表明:在HNO3浓度3 mol·L-1,Al(NO3)3浓度1.5 mol·L-1,液固比30∶1,搅拌速度300 r·min-1,温度100℃,搅拌时间90 min的条件下,稀土精矿中氟碳铈矿的浸出率达到92.18%,氟碳铈矿与独居石基本分离。通过产物层受界面交换和扩散混合控制的新缩小核模型可用来描述浸出过程的动力学,计算推导出了反应的宏观动力学方程。  相似文献   

6.
测定了La F3和La OF在饱和水蒸气气氛下1000℃焙烧3 h后的脱氟率,采用X射线衍射技术对焙烧产物进行了物相分析。测定了氟碳铈矿在饱和水蒸气气氛下700~1000℃焙烧3 h后的焙烧产物中的氟含量,并对焙烧产物进行了物相分析,对焙烧前后的氟碳铈矿进行了SEM扫描对比分析。结果表明:氟碳铈矿发生脱氟反应的过程为:REF3·RE2(CO3)3首先分解生成REF3和RE2O3,同时伴随REOF的生成,然后在有水分子的条件下,REF3,REOF相继发生脱氟反应生成RE2O3和HF。  相似文献   

7.
将钕铁硼废料与(NH_4)_2SO_4混合后焙烧,选择性回收钕铁硼废料中的稀土成分。采用单因素控制变量的方法对焙烧过程中的焙烧温度、焙烧时间、钕铁硼与(NH_4)_2SO_4混料质量比进行研究,结合稀土、铁等浸出率的影响,结果表明:焙烧温度400℃,焙烧时间120 min,钕铁硼与(NH_4)_2SO_4混料质量比1∶2,该条件下稀土可以获得较高的浸出率,约为92%,而Fe的浸出率仅为3%。通过对原料和焙烧后的产物进行热力学、扫描电镜、 X射线衍射和热重差热分析,综合分析得知钕铁硼废料中的主要成分REFeO_3, Fe_2O_3, RE_2O_3和Al_2O_3等发生硫酸化反应,生成RE_2(SO_4)_3和(NH_4)_3Fe(SO_4)_3及(NH_4)Al(SO_4)_2等。升高温度不利于REFeO_3的反应,从而抑制大部分Fe的硫酸化。经过焙烧,稀土以可溶性硫酸盐的形式存在,铁铝等杂质保持一个低的浸出率大部分留在渣中。  相似文献   

8.
在已有较优直接酸浸和碱处理(碱煮、焙烧)-酸浸工艺条件下,对钙热还原稀土渣(简称稀土渣)进行酸浸热力学理论分析,应用X射线多晶衍射仪(XRD)分析碱处理过程物相变化,应用扫描电镜型附带的能谱仪(SEM+EDS)对碱煮的样品进行线性扫描和元素分析。热力学理论计算和实验结果均表明:碱煮条件下,氟化稀土能转化为氢氧化稀土;碱性添加剂焙烧条件下,氟化稀土能转化为氧化稀土,但NaOH,Na_2CO_3焙烧-酸浸工艺稀土却不能完全浸出,原因是酸浸过程CaF_2对稀土浸出影响大。此外,碱煮-酸浸的稀土提取率低,原因是碱煮时新生成的氢氧化稀土"包裹"了氟化稀土,阻碍了氟化稀土进一步碱转。在与添加Na_2SiO_3焙烧方面,Na_2SiO_3焙烧处理能削减CaF_2对稀土浸出的影响,使稀土接近完全浸出,因为酸浸Na_2SiO_3焙烧产物将生成偏硅酸和SiF~(6-)络合物,[SiF_6]~(2-)络合物的生成结合了CaF_2中大量的F-,同时抑制了稀土离子对CaF_2的解离作用,促进了稀土的浸出。此时,溶液中CaF_2固体与Ca~(2+),[SiF_6]~(2-)和稀土离子共存达到新的平衡。  相似文献   

9.
包钢选矿厂尾矿中含有大量稀土,可以回收利用.提出MgO焙烧-碳热氯化提取包钢选矿厂尾矿中稀士的新工艺.在该工艺中首先将尾矿与MgO混合焙烧脱氟,然后使用氯气作为氯化剂,碳作为还原剂,碳热氯化该脱氟后的尾矿中的稀土,水浸取回收稀土.考察了MgO的用量、碳热氯化时间、碳热氯化温度对稀土提取率的影响.结果表明:尾矿与Mgo焙烧后,700℃氯化反应0.5 h,氯化率高达83%.利用X射线衍射探讨了脱氟过程可能发生的反应.  相似文献   

10.
针对包头混合稀土精矿钠碱焙烧分解产物中氟、磷洗涤率低的问题,研究了水洗温度以及高压分解对焙烧矿中氟、磷洗涤率的影响。结果表明:常压下,水洗温度80℃,氟的洗涤率为75.65%,磷的洗涤率为40.87%;高压条件下,反应温度240℃,氟的洗涤率可达到95.11%,磷的洗涤率可达到62.85%。运用XRD,SEM-EDS分析发现:混合稀土精矿钠碱焙烧分解生成的Na_3PO_4,NaF易与Ca(OH)_2形成低熔点共熔体,胶结于稀土氧化物的边缘或者充填于其孔洞、裂隙内,是氟、磷洗涤率低的主要原因。高压反应对于稀土和氟、磷的分离具有强化作用,提高氟、磷的洗涤率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号