首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
(四)光度分析中胶束增敏机理研究的现状自从表面活性剂在光度分析中得到应用以来,关于表面活性剂的增敏机理曾经进行了广泛的研究。但是,表面活性剂究竟以什么形式参与增敏作用这一基本问题至今尚未取得比较一致的看法。目前,主要流行以下三种观点:(1)以胶束形式参与增敏作用,但与染料分子相互作用的是胶束中的表面活性剂分子,(2)以表面活性剂的单分子形式参与增敏作用,而极性端的电荷起着决定性的作用,(3)CMC值以前,表面活性剂以单分子形式增敏,而在CMC值以后则以胶束形式增敏,即单分子和胶束均有增敏作用。  相似文献   

2.
考察了4种含有不同N位取代基的对称吲哚方酸菁染料在阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)、阴离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂曲拉通(TX-100)水溶液中的光降解行为,结果表明,表面活性剂对染料分子具有保护作用,其影响大小为CTAB>TX-100>SDS,分子中有羧基的染料受影响程度最大。在表面活性剂浓度较低时,染料光降解程度随着表面活性剂浓度的增加而增加,但形成胶束后,染料的光降解程度则随着表面活性剂浓度的升高而降低。  相似文献   

3.
正负离子表面活性剂与两性表面活性剂的相互作用   总被引:3,自引:0,他引:3  
本文研究正负离子表面活性剂与两性表面活性剂混合水溶液的表面性质, 以及两性表面活性剂对正负离子裘面活性剂溶解度的影响。结果表明: (1) 两性表面活性剂的加溶作用,有助于正负离子表面活性剂的溶解; (2) 加入两性表面活性剂的量适当, 混合溶液基本保持原正负离子表面活性剂的表面活性; (3) 正负离子表面活性剂与两性表面活性剂在表面层和胶团中分子间的相互作用比正负离子表面活性剂与非离子表面活性剂分子间的相互作用稍强HC-FC正负; 离子表面活性剂与两性表面活性剂混合体系在表面层中有可能形成双分子或多分子层结构。  相似文献   

4.
染料与表面活性剂的相互作用对纺织品的染色有重要影叫,一直是广泛研究的课题.近年来由于胶束增溶光度法的发展,它又引起了分析化学家的注意.但是现有的研究多集中于染料与电性相反的离子型表面活性剂的相互作用,且缺乏深入的定量研究.本文研究一种阴离子染料——漂蓝6B与非离子表面活性剂Triton X-100间的相互作用,用光度法定量地确定了二者的结合比,并进而研究了阴离子表面活性剂SDS对此种相互作用的影响.  相似文献   

5.
聚合物与表面活性剂复配体系已广泛应用于医药、生物、石油石化等领域。从微观上认识其相互作用机理对指导其生产实际有着重要作用,因而此方面的研究倍受关注。随着分子模拟技术的发展,聚合物与表面活性剂在分子水平上的相互作用机理研究已经被广泛开展,并获得了大量有用的信息。本文综述了耗散粒子动力学(DPD)和粗粒度分子动力学(CG-MD)在聚合物与表面活性剂相互作用方面的应用,分别对中性聚合物与离子型表面活性剂,以及带相反电荷的聚电解质和表面活性剂在溶液相和界面相的相互作用进行了阐述,并揭示了聚合物/表面活性剂聚集体结构形态的变化规律。  相似文献   

6.
采用分子动力学模拟研究了以十二烷基苯磺酸钠(SDBS)为代表的阴离子型表面活性剂,以十二烷基三甲基溴化铵(DTAB)为代表的阳离子型表面活性剂,以壬基酚聚氧乙烯醚(NPE)为代表的非离子型表面活性剂,以十二烷基二甲基甜菜碱(Betaine)为代表的两性表面活性剂及空白实验.模拟了表面活性剂在油水界面上的行为,考察了表面活性剂分子与石油分子之间的径向分布函数(RDF)、石油分子在竖直方向的均方位移(MSD)、油水界面张力(IFT)、石油层与岩石层之间的相互作用能、石油层的相对浓度在竖直方向的分布及石油分子质心位置随模拟时间的变化关系等,讨论了不同表面活性剂的洗油性能.结果表明:(1)SDBS,NPE和Betaine分子初始状态下呈近似的规律排列,非极性端部分插入油相中,极性端延伸进入水相中;随后表面活性剂的极性端表现出聚集趋势,逐渐形成一个外部亲油内部亲水的一个胶束状粒子,粒子随模拟的进行逐渐融入到油层当中;DTAB从开始的近似规则排列逐渐变为无规排列,但是始终保持亲油端插入到油相中,亲水端位于油水界面上.(2)表面活性剂分子与石油分子之间的相互作用强弱顺序为Betaine≈DTABSDBSNPE.(3)由质心高度和动力过程中的图像截图分析,表面活性剂洗油效果的顺序为BetaineSDBSNPEDTABNone.模拟结果与实际的驱油结果一致,从分子层面上解释了不同表面活性剂洗油的规律.  相似文献   

7.
两性高分子与小分子及大分子的相互作用(下)   总被引:2,自引:0,他引:2  
2 两性高分子与染料及表面活性剂的相互作用文献中对阳离子聚电解质、阴离子聚电解质及非离子性高分子与染料、去污剂、表面活性剂等小分子物质的相互作用有较多报道,而有关两性高分子与这些小分子物质相互作用的报道极少。本节就合成两性高分子与染料等小分  相似文献   

8.
通过表面张力的测定研究了皂荚素(GS)的表面活性及其热力学性质随温度的变化.测定了皂荚素分别与十二烷基磺酸钠、十二烷基聚氧乙烯醚硫酸钠、全氟辛酸钠、十二烷基脂肪醇聚氧乙烯(9)醚、辛基酚聚氧乙烯(10)醚及十六烷基三甲基溴化铵等复配的表面张力-浓度对数关系(γ~lgc)曲线,并用二维晶格模型及正规溶液理论计算了含皂荚素的二元表面活性剂溶液表面吸附层的组成、分子相互作用参数及分子交换能.结果表明,皂荚素主要呈现非离子表面活性剂的性质,与阳离子表面活性剂复配呈微弱的离子性.复配后分子交换能均小于零,复配增效.增效顺序为GS/阳离子>GS/非离子>GS/阴离子(表面活性剂复配体系).  相似文献   

9.
辛基甲基亚砜与离子型表面活性剂在水溶液中的相互作用   总被引:1,自引:0,他引:1  
本文用测定表面张力的方法研究了非离子表面活性剂辛基甲基亚砜(OMS)分别与离子型表面活性剂C_(10)H_(21)SO_4N_a(SDeS)、C_7F_(15)COONa(SPFO), C_(10)H_(21)N(CH_3)_3B_r(DeTAB)等在水溶液中的相互作用。发现上述混合体系的胶团形成及表面吸附都有不同程度的增效作用; 表面活性分子在吸附层中的相互作用参数β~s以及在胶团中的相互作用参数β~m均为负值并有一定变化规律; OMS与DeTAB的相互作用较OMS与SDeS或SPFO的相互作用弱得多; 此现象自OMS分子在水溶液中的质子化作用得到解释。  相似文献   

10.
采用小幅低频振荡和界面张力弛豫技术, 考察了疏水缔合水溶性聚丙烯酰胺(HMPAM)在正癸烷-水界面上的扩张黏弹性质, 研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na对其界面扩张性质的影响. 研究发现, 疏水链段的存在, 使HMPAM在界面层中具有较快的弛豫过程, 扩张弹性显示出明显的频率依赖性. 表面活性剂分子可以通过疏水相互作用与聚合物的疏水嵌段在界面上形成类似于混合胶束的特殊聚集体. 表面活性剂分子与界面聚集体之间存在快速交换过程, 可以大大降低聚合物的扩张弹性. 同时, 聚合物分子链能够削弱表面活性剂分子长烷基链之间的强相互作用, 导致混合吸附膜的扩张弹性远低于单独表面活性剂吸附膜.  相似文献   

11.
The interaction of dye and surfactants was studied by their spectroscopic and surface properties. Large bathochromic shift (15 nm) in the absorption spectrum was found for aminoindophenol dye at high pH in cationic surfactant, while there is no significant shift in anionic, zwitterionic and nonionic surfactant solutions. The static and dynamic surface properties show there is strong interaction in mixture of cationic surfactant and aminoindophenol dye. Interaction of dye and surfactants on surface and in solution is correlated to the intensity of dye deposition on fiber. The charge complex formation between cationic surfactant and aminoindophenolic dye delays the dye diffusion into keratin fiber. The stronger is the dye/surfactant interaction, the lower dye deposition and diffusion become.  相似文献   

12.
In the present work, solvent extraction using reverse micelles is proposed for the removal of organic dyes from water. In this approach, the dye is solubilized in the aqueous core of the reverse micelles, which are present in the organic phase. The organic phase is subsequently separated from the aqueous phase leading to signifi-cant removal of dye. Experimental results reveal that the electrostatic interaction between the oppositely charged surfactant head group present in the reverse micelles and the dye molecule plays a key role in the separation. The removal of the anionic methyl orange dye from water is carried out in the presence of cationic hexadecyltrimethyl ammonium bromide surfactant, whereas the removal of the cationic methylene blue dye is carried out in the presence of anionic sodium dodecylbenzene sulfonate surfactant. Amyl alcohol is used as the solvent. The influence of parameters such as dye concentrations, surfactant concentrations, pH, and KCl and NaBr concentrations on the percentage removal of dye was studied. The percentage removal of dye is decreased with the increase in dye concentration in the feed. The increase in surfactant concentration resulted in higher dye removal, because more reverse micelles could be hosted in the organic phase. The increase in aqueous phase pH resulted in enhanced removal of methyl orange from water, while in the case of methylene blue the percentage removal decreased. The increase in KCl and NaBr concentrations resulted in decreased percentage removal of methylene blue, whereas the percentage removal of methyl orange was increased. The effect of pH and salt concentration is explained based on charge transfer mechanism and electrostatic interactions and dye-surfactant complex formation.  相似文献   

13.
The effect of electrolytes on the interaction between an anionic dye and a cationic surfactant was investigated spectrophotometrically in submicellar concentration range at certain temperature. The spectral change of the azo dye C.I. Reactive Orange 16 (RO16) exhibits a high sensitivity to the polarity of dye's environment. Dodecylpyridinium chloride (DPC) affects the electronic absorption spectra of dye solution that is dye-surfactant interaction results formation of complex and therefore a decrease in maximum absorption spectra (1.577 at 494 nm). The electrolyte cations cause an increase of the absorbance of DPC-RO16 ion-pair complex in the following order: Ca(2+)>Na(+)>NH(4)(+)>K(+)>Mg(2+), also for electrolyte anions Br(-)>Cl(-)>SO(4)(2-). Furthermore, this order can be changeable with increasing electrolyte concentration. The increase on absorbance value with increasing electrolyte concentration is explained as charge screening. The increase or decrease on absorption spectra of RO16-DPC solution depends on concentration range of the electrolyte added. As an increase on absorbance value with increasing electrolyte concentration is explained as charge screening, a decrease in this value for higher concentration of electrolyte is attributed as the charge of micelle shape.  相似文献   

14.
Summary Results of spectrophotometric, conductometric and dialysis studies on the interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate (anionic), cetyltrimethylammoniumbromide (cationic) and Triton X 100 (nonionic) surfactants have been reported. The anionic surfactant, SDS has been observed to undergo both electrostatic and hydrophobic interactions with the dye cation. Aggregation of the dye molecules can be destroyed when the surfactant is in large excess, whereas, excess dye can check micellization of SD S. At a ratio of AO:SDS=1:7 and above, dye embedded mixed micelles are formed. These remain in a separate phase, probably as coacervates. At lower ratios than 1:7, aggregation of dye molecules is induced, which being complexed with SDS become stabilized as colloids. The colloid and the coacervate have been observed to be thermally stable, negatively charged materials that can be broken by salts, and cations of higher valency are more effective in this regard. An 1:3 = AO:SDS colloid has beeen found to be sufficiently large like the coacervates to pass through a membrane having cut off permeability for molecular weights 12,000 and above. All the above features of AO-SDS interaction have been observed to be absent for AO-CTAB and AO-TX 100 systems, Even hydrophobic interaction has played an insignificant role in these cases. Thus, the dye cation, the cationic and the nonionic surfactants have almost retained their self physicochemical identities in solution in the presence of each other. Electrostatic interaction is thus the primary requirement for acridine orange-surfactant (anionic) system; the hydrophobic effect is secondary and may become co-operative.With 9 figures and 2 tables  相似文献   

15.
《Fluid Phase Equilibria》2006,239(2):166-171
Among several known technique for investigating dye–surfactant interactions, the conductivity measurement and spectroscopy are simple and accessible methods for determining the degree of interaction between dye and surfactant. An abrupt change in measured specific conductance of dye–surfactant mixture is attributed to the formation of dye–surfactant ion pair at six different temperatures. Thermodynamic parameters were also evaluated. The results have shown that low temperature favors the tendency for ion pair formation, as the equilibrium constant decreases with increase in temperature. To enhance the scope of the present study, a gradual transition in absorbance from pre-miceller to post-miceller region of surfactant were monitored. Spectral behavior of dye–surfactant mixture with varying concentration of surfactant confirms that electrostatic interaction between dye and surfactant occurs up to a certain level. Beyond this concentration only the dissolution of dye–surfactant aggregate was observed. The association tendency of opposite charged surfactant is used to recover dye from dye–surfactant mixture.  相似文献   

16.
Sol-gel materials known as organically modified silicates (ORMOSILs) offer interesting features such as chemical and mechanical stability. In this paper VTES (vinyltriethoxysilane) and TEOS (tetraalkoxysilane) are mixed in 3:1 ratio. Sol-gel solution was prepared by hydrolysis process of precursors by using ethanol as solvent. After a while a pH-sensitive indicator bromocresol purple (BCP) and surfactant were incorporate into the sol-gel mixture. The percentage of sodium dodecyl sulfate (SDS) and polyethylene glycol (PEG) which act as surfactant were varied to observe the effect of improving host material's nanostructure as well as the interaction between BCP and sol-gel matrices. The absorption peak of the BCP dye changed significantly in the presence of surfactant compared to pure VTES: TEOS mixture (control) in the range of 400 to 450 nm. The presence of BCP dye in the sol-gel mixture can be determined via FTIR spectrum with a =C–H stretch in aromatics observed at 3100-3000 cm-1 which represented the aromatic of the BCP structure. The addition of BCP and surfactant had influenced the FTIR spectra of VTES: TEOS sol-gel materials. Addition of an anionic surfactant to the sol-gel mixtures was found to increase the BCP dye and the sol-gel matrices interaction, thus reducing the dye's tendency to leach. This work shows that sol-gel derived matrices yield dyes with sufficient rigid environment and addition of the surfactant helps to improve the interaction of filler matrices. The anionic SDS shows better leaching resistant compared to non-ionic PEG surfactant. Results of this study offer an attractive possibility to optimize the doped sol gel matrices to be used as sensing material in aqueous condition.  相似文献   

17.
The interaction between thionine (a cationic thiazine dye) and anionic surfactant sodium dodecylsulfate in aqueous solution at different temperatures has been studied spectrophotometrically. The absorption spectra were used to quantify the dye/surfactant binding constants and surfactant/water partition coefficients of the dye by applying mathematical models that consider partitioning of the dye between the micellar and aqueous pseudo-phases. The Benesi-Hildebrand equation was applied to calculate the binding constants of thionine to sodium dodecylsulfate micelles over a temperature range of 293 to 333 K. To evaluate the thermodynamic aspects of the interaction of thionine with sodium dodecylsulfate micelles, Gibbs energy, enthalpy and entropy changes were determined. The effect of temperature on the critical micelle concentration of sodium dodecylsulfate in the presence of thionine was also studied and discussed. The binding affinity of thionine to the sodium dodecylsulfate micelles significantly decreased with increasing temperature because of the thermal agitation.  相似文献   

18.
We synthesized and characterized a series of new polymers-hydrophobically modified cationic polysaccharides-based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-alkylammonium chloride groups randomly distributed along the polymer backbone. These polymers are good candidates for studying the hydrophobic effect on polymer/surfactant association. In previous papers we reported their interactions with oppositely charged surfactants. For further insight into the relative importance of the hydrophobic interaction in the association process now we studied the thermodynamics of the interaction of these hydrophobically modified polymers with surfactants of the same charge (DMRX/CnTAC) by isothermal titration calorimetry (ITC). In order to try to discriminate the solution behavior of these polymer/surfactant systems, we analyzed separately the interaction of unmodified dextran with ionic surfactants and the interactions between the corresponding cationic surfactants. The interaction enthalpies for DMRX/CnTAC systems were derived from a proposed thermodynamic model with equations that describe the polymer-surfactant interactions. The thermodynamic parameters for the DMRX/CnTAC aggregation process as well as surfactant micellization in the presence of the polymer were also calculated. From all the results we were able to ascertain the effect on the interactions of changing the alkyl chain length of the polyelectrolyte pendant groups or the surfactant. The importance of the polymer aggregation state on the mechanism of interaction was also addressed.  相似文献   

19.
The spectral studies of cationic dyes, pinacyanol chloride (PCYN) and acridine orange (AO) with capsular polysaccharide Klebsiella K16 (PK16) biopolymer in micellar media reveal many interesting phenomena. Intensity of the metachromatic band (μ) at 490 nm decreases gradually on addition of cationic single surfactant to the biopolymer PK16–dye system of P/D = 30, whereas the intensity of α and β bands reach to the value of original pure dye. As a result, the cationic surfactant destroys the metachromatic compound and forms a new complex with biopolymer PK16 by freeing the dye molecule. Enhancement of fluorescence intensity of AO-PK16 system with cationic surfactant is another evidence for the binding between the biopolymer and the surfactant. Interaction between the biopolymer and mixed surfactant has also been studied. Finally, the binding ability of cationic surfactants with or without non ionic surfactant, the idea of the critical aggregation concentration (cac) of the surfactant, mole fraction and the charge density of mixed surfactant for binding with PK16 and also the site of interaction have been pointed out.  相似文献   

20.
Ultraviolet spectrometric study of alizarin red S (ARS) showed the substantial change in dye spectra by cationic CTAB as compared to anionic SDS and nonionic TX-100 surfactant. High spectral change by CTAB confirms the anionic nature of ARS dye and thus ARS-CTAB complex formation takes place due to electrostatic force of attraction. A little spectral change by SDS is the result of similarly charged repulsive forces that overcome weak hydrophobic-hydrophobic interaction between dye and surfactant micelles. TX-100 exhibited moderate spectral effect responsive to weak hydrophobic-hydrophobic interaction alone. MEUF study of ARS dye justified the spectral changes and dye rejection percentage (R) decreases in the following order: cationic > nonionic > anionic surfactant. Permeate flux (J) slightly decreases in presence of CTAB and it remains virtually constant for both SDS and TX-100. Addition of copper salt (i.e., CuCl2) in dye-CTAB complex solution, favors rejection (%) removing dye and copper simultaneously via micellar enhanced ultrafiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号