首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用沉淀法制备了球形CeO2纳米粒子,将其作为核粒子溶液,然后向其中滴加四氯合金酸溶液,在CeO2胶体表面利用柠檬酸钠还原[AuCl4]-离子,得到了CeO2@Au核壳结构纳米粒子。TEM分析表明,CeO2纳米粒子分散效果好,粒径为5 nm;CeO2@Au核壳粒子为球形,无团聚,平均粒径为15 nm。XRD分析表明,CeO2@Au核壳粒子为晶型结构,属于立方晶系,CeO2空间群为O5H-FM3M,Au的空间群为Fm-3m。UV-vis分析发现,CeO2@Au核壳粒子在300和520 nm处呈现出两个比较强的吸收峰,分别对应于CeO2胶体溶液的吸收峰和金粒子的表面等离子共振吸收峰。EDS分析了核壳结构CeO2@Au纳米粒子中存在Ce,O和Au 3种元素。XPS分析表明,Ce3d3/2和Au4f电子结合能与标准结合能相比发生了变化,说明CeO2与Au之间存在着相互作用。  相似文献   

2.
帽状铝纳米粒子的制备及表面等离子共振特性   总被引:3,自引:0,他引:3  
金属纳米材料具有许多独特的物理和化学性质,其中一个重要的光学性质就是表面等离子共振,然而在大多数情况下,金属纳米粒子表面等离子共振所产生的吸收峰被限制在相对狭小的范围内,很难进行调谐。近年来,以电介质为核金属为壳的核壳结构复合纳米材料成功的解决了这一问题,通过设计和剪裁内核的直径与外壳层厚度的比值,可以实现光学性质可调的特性[1~5]。此类复合材料可被广泛应用于光催化、传感器、光信息存储、生物光子学、生物医学等领域[6~11]。美国莱斯大学及德州的研究人员利用这类核壳结构纳米材料成功地实现了对体外乳腺肿瘤的杀灭实验[12]。在这种类型的材料中,对称性降低的即不完全包裹的纳米粒子如杯状[13]、帽状[13,14]、半球壳状[15]、月牙状[16]等核壳结构复合粒子由  相似文献   

3.
利用硅烷偶联剂引发法制备核壳结构金属铝纳米粒子(Al NPs)@聚合物, 并研究了聚合反应时间和单体浓度对核壳结构尺寸的影响. 首先合成了硅烷偶联引发剂{2-溴-2-甲基-[3-(三甲氧基硅基)丙基]丙酰胺}, 并通过在甲苯中回流的方法, 将其锚定在金属铝纳米粒子表面. 然后, 在粒子表面引发甲基丙烯酸甲酯的原子转移自由基聚合, 形成聚甲基丙烯酸甲酯(PMMA)壳层. 通过核磁共振波谱仪(NMR)和傅里叶变换红外光谱仪 (FTIR)证明了引发剂和PMMA的成功接枝. 透射电子显微镜(TEM)图像表明, PMMA改性后的金属铝纳米粒子的尺寸和形貌基本不变, 且被厚度约为15 nm聚合物壳层完整均匀地包覆. 此外, 利用动态光散射(DLS)进一步揭示了聚合时间和单体浓度对核壳结构水合直径(Dh)的影响, 发现延长聚合时间或增加单体浓度均可显著提高核壳结构尺寸.  相似文献   

4.
首次使用可逆加成断裂链转移(RAFT)聚合方法,制备了BaTiO3@PMMA核壳结构纳米颗粒,颗粒壳层具有厚度均匀、可控等特点,并将其添加到聚甲基丙烯酸甲酯(PMMA)基体中制备了颗粒分散均匀的高导热性能有机高分子体系.通过FT-IR,1H NMR,TGA以及TEM等测试技术对其化学结构和微观形貌进行了表征,证明BaTiO3表面包覆了一层完整的PMMA有机高分子,所制备的复合粒子具有明显的核壳结构.研究表明,当BaTiO3纳米颗粒添加量达到50%体积含量时,添加未改性的BaTiO3纳米颗粒的高分子体系的导热系数为0.894 W·m-1·K-1,而添加BaTiO3@PMMA核壳结构纳米杂化颗粒的高分子体系达到了1.137 W·m-1·K-1;同时,两种高导热高分子体系的体积电阻率均保持在1015Ω·cm以上,仍然具有良好的电绝缘性能.  相似文献   

5.
交联核壳结构PBA/PS和PBA/PMMA纳米微球的制备与应用   总被引:1,自引:0,他引:1  
考察了聚丙烯酸丁酯/聚苯乙烯(PBA/PS)以及聚丙烯酸丁酯/聚甲基丙烯酸甲酯(PBA/PMMA)交联核壳结构纳米高分子微球的制备方法,并对其在尼龙复合材料中的应用进行了初步研究.结果表明,通过交联剂的引入使粒子核层和壳层内部均形成了高度交联的结构,可以限制亲水性较小的聚苯乙烯(PS)壳层向粒子内部迁移的趋势;制备出的微球平均粒径为40~50 nm,粒径分布很窄.采用饥饿态加料方式加入第二单体不仅可以使微球具有较高的产率和凝胶率,而且可以使其具有更理想的核壳结构和更窄的粒径分布.此外,将合成出的PBA/PMMA核壳粒子对尼龙6基体进行复合的结果表明,由于该微球表面与尼龙6基体之间具有较强的界面相互作用且微球具有较大的形变能力,可以在基体中形成良好的分散,在保持材料强度的同时有效地提高了其刚性和韧性.  相似文献   

6.
核-壳粒子增韧结合了弹性体增韧和刚性粒子增强的优点,将其用于聚合物共混体系中有可能得到比基体树脂更高韧性更好刚性的复合材料。本文综述了相关核-壳粒子的分类、形态、形成机制,以及它们对聚合物基体的增韧机理,并详细阐述了反应性和非反应性聚合物共混体系中原位形成的核-壳粒子形态演化规律及其对共混物力学性能的影响。  相似文献   

7.
用超声波分散处理Pe3O4粉末同稳定剂溶液的分散体系,使Fe3O4粉末能稳定地分散成细微粒子,同时增强了Fe3O4细微粒子同单体,引发剂的亲合性。苯乙烯-丙烯醛共聚物为高分子壳层,包裹Fe3O4得到了带醛基的磁性高分子复合微球。  相似文献   

8.
以胶体粒子为模板制备核壳纳米复合粒子   总被引:13,自引:0,他引:13  
官建国  邓惠勇  王维  任平 《化学进展》2004,16(3):327-334
核壳纳米复合粒子具有许多不同于单组分胶体粒子的独特的光、电、磁、催化等物理与化学性质,是构筑新型功能复合材料的重要组元,在光子带隙材料、微波吸收材料、电磁流变液、催化剂和生物等领域有重要应用.本文从控制核壳复合粒子的微观结构及壳层均匀性与厚度的角度,详细评述了目前以胶体粒子为模板制备粒径从纳米到微米尺度的核壳复合粒子的方法.指出利用胶体粒子模板表面与壳层物质或其前驱物间的特殊相互作用(包括静电和化学相互作用),是完善现有制备方法和发展新方法来制备具有设定组成、结构和性能的核壳复合粒子的关键,同时也是将来的粒子表面纳米工程和获取有序的、先进纳米复合材料的主要方向。  相似文献   

9.
以 (AgBr) m 团簇作晶种 ,在柠檬酸钠存在条件下 ,(AgBr) m 团簇表面结合的Ag+被光化学还原而获得土红色的液相 (AgBr) 核·(Ag) 壳 纳米粒子 .研究了 (AgBr) 核·(Ag) 壳 纳米粒子的光谱特性 ,在 51 2nm处有最强共振散射峰 ,在41 0nm处产生一个吸收峰 .结果表明 ,(AgBr) 核·(Ag) 壳 纳米粒子的形成是导致51 2nm共振光散射的根本原因 .  相似文献   

10.
程林  王凤洋 《应用化学》2011,28(2):149-153
将等质量的嵌段聚合物聚乙烯基萘聚丙烯酸和聚氧化乙烯聚丙烯酸(P2VN-b-PAA和PEO-b-PAA)溶解于N,N′-二甲基甲酰胺(DMF)中,加入小分子二元胺(1,2-丙二胺,PDA),制备出均匀的两亲性杂壳聚合物纳米粒子(MSNPs)。 该粒子以PEO和P2VN混合嵌段为壳层,非共价键交联的PAA嵌段为核,在水相及有机相中均可稳定分散,具有典型的两亲性特点。 扫描电子显微镜和光散射测试结果表明,该杂壳聚合物粒子(MSNPs)的粒径在300 nm左右,分布较均匀,并显示出壳层可塌缩变形的疏松核(软粒子)特征。 以该聚合物粒子(MSNPs)为模板,可以方便制备出金纳米粒子簇合物。  相似文献   

11.
Submicron-size composite polymer particles consisting of polydimethylsiloxane/core and polybutadiene/shell were synthesized by seeded emulsion polymerization. The morphologies of composite particles were affected by polybutadiene ratio in the composite particles. Highly grafted polymer by poly(styrene-co-acrylonitrile) could be prepared by using the composite particles containing polybutadiene with polymerizable group. The morphologies of the grafted polymer were influenced by the morphologies of composite particles and the kinds of grafting initiators. It was found that surface gloss and lubricity of the graft polymers were influenced by morphologies of composite particles.  相似文献   

12.
Dual‐responsive micrometer‐sized core‐shell composite polymer particles were prepared by dispersion polymerization followed by seeded copolymerization. Polystyrene (PS) particles prepared by dispersion polymerization were used as core particles. N‐isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) were used to induce dual‐responsive that is thermo‐ and pH‐responsive properties in the shell layer of composite polymer particles, prepared by seeded copolymerization with PS core particles. Temperature‐ and pH‐dependent adsorption behaviors of some macromolecules on composite polymer particles indicate that produced composite polymer particles exhibit dual‐responsive surface properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
对包含纳米SiO2粒子的甲基丙烯酸甲酯(MMA)的细乳化和细乳液聚合行为进行了研究.发现在超声细乳化过程中,90%以上的分散于MMA相的纳米SiO2粒子将从油相逃逸到水相.采用甲基丙烯酸3-(三甲氧基甲硅烷基)丙酯(MPS)偶联剂处理SiO2粒子,可以增加其表面亲油性,抑止这种逃逸,经测定几乎全部SiO2粒子在超声细乳化后仍稳定停留在细乳化亚微液滴中.通过进一步细乳液聚合,得到了分散稳定、界面清晰的包裹有纳米SiO2粒子的聚甲基丙烯酸甲酯复合粒子乳液.  相似文献   

14.
We prepared polymeric microparticles with coordinated patches using oil-in-water emulsion droplets which were stabilized by adsorbed colloidal polystyrene (PS) latex particles. The oil phase was photocurable ethoxylated trimethylolpropane triacrylate (ETPTA), and the particle-armored oil droplets were solidified by UV irradiation within a few seconds to produce ETPTA-PS composite microparticles without disturbing the structures. Large armored emulsion drops became raspberry-like particles, while small emulsion drops with a few anchored particles were transformed into colloidal clusters with well-coordinated patches. For high-molecular-weight PS particles with low chemical affinity to the ETPTA monomer, the morphology of the patchy particle was determined by the volume of the emulsion drop and the contact angle of the emulsion interface on the PS particle surface. Meanwhile, for low-molecular-weight PS particles with high affinity, the ETPTA monomers were likely to swell the adsorbed PS particles, and distinctive morphologies were induced during the shrinkage of emulsion drops and the phase separation of ETPTA from the swollen PS particles. In addition, colloidal particles with large open windows were produced by dissolving the PS particles from the patchy particles. We observed photoluminescent emission from the patchy particles in which dye molecules were dispersed in the ETPTA phase. Finally, we used Surface Evolver simulation to predict equilibrium structures of patchy particles and estimate surface energies which are essential to understand the underlying physics.  相似文献   

15.
使用2,2′-偶氮二异丁基脒二盐酸盐自由基引发剂,改变甲基丙烯酰氧乙基十六烷基二甲基溴化铵阳离子功能单体的量与苯乙烯进行乳液聚合获得不同粒径的阳离子乳胶粒,使用十二烷基硫酸钠为乳化剂和过硫酸钾为引发剂制备阴离子聚合物乳胶粒.采用基于静电相互作用的异凝聚法将以上2种带有相反电荷的乳胶粒组装,获得了表面粗糙程度不同的复合微粒.对异凝聚过程中复合液透光率和微粒大小及分布进行跟踪测试,并用透射电子显微镜表征了阳离子微粒、阴离子微粒以及复合微粒的形态和大小.结果表明,在一定范围内可以通过控制阴离子乳胶粒与阳离子乳胶粒的复合比例改变单个复合微粒表面阳离子小微粒的数目.  相似文献   

16.
Biocompatible polymer-magnetite hybrid nanoparticles were prepared by means of in situ synthesis of magnetite within polysaccharide hydrogel nanoparticles. Hydrogel nanoparticles were first fabricated by blending high-molecular-weight carboxymethyl cellulose as an anionic polymer, and low-molecular-weight chitosan as a cationic polymer to form polyion complexes (CC particles). These polyion complexes were then chemically crosslinked using genipin, a bio-based cross-linker, to form stable nanoparticles having a semi-IPN structure (CCG particles). Magnetite was lastly synthesized within CCG particles by the coprecipitation method to obtain polymer-magnetite hybrid nanoparticles (CCGM particles). The formations of CC, CCG and CCGM particles were mainly observed by transmittance, absorbance of genipin and TEM, respectively, and their hydrodynamic diameters and zeta-potentials were analyzed. It was confirmed that the hydrodynamic diameters and the zeta-potentials of these particles were significantly influenced by pH of the suspension, which was attributed to the charges of polymers. The diameters of CCGM particles were smaller than 200 nm at any pH conditions, suggesting the possibility to apply them as drug delivery carriers. CCGM particles exhibited the responsiveness to a magnetic field in addition to their high dispersion stability, indicating their potential to be utilized as a biomaterial for hyperthermia.  相似文献   

17.
Tin oxide-doped hybrid particles were prepared by a wet chemical process with organic-inorganic (phenyl/silica) hybrid particles in an alcoholic solution. The phenyl/silica hybrid particles, with a diameter of ca. 790 nm were used as a new support material for tin oxide (SnO2) particles from tin(IV) chloride. The surface of the particles was modified via nitration of aromatic groups in the particles, to promote formation of the tin oxide coating on the particles. The thickness and surface morphology of the tin oxide layer coated on the nitrated-phenyl/silica hybrid particles could be controlled by varying the tin(IV) chloride concentration and reaction time. The size and morphology of the resultant particles were investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The particles obtained were also characterised by infrared (FTIR) and solid-state 13C magic angle spinning nuclear magnetic resonance (13C-CP/MAS NMR) spectroscopy. The effect of processing parameters on the crystallinity and structure of the doped hybrids were confirmed by X-ray diffraction (XRD) patterns.  相似文献   

18.
The morphologies and the microstructures of the dispersed particles of the cubic phase, which were formed by precursor method, were studied. The freeze-fracture TEM clearly showed that the aqueous dispersed particles have irregular cubic shapes. X-ray diffraction technique has been utilized to study the microstructure of the particles and it was found that these particles still retained the cubic character. The sizes of the particles were measured by dynamic light scattering, and the results showed that the sizes of the dispersed particles were between 200~400 nm under different conditions.  相似文献   

19.
Micrometer-sized polystyrene template particles of narrow size distribution were prepared by dispersion polymerization of styrene in 2-methoxyethanol. Uniform micrometer-sized polystyrene/crosslinked poly(styrene-divinyl benzene) composite particles were formed by a single-step swelling process of the template particles with styrene, divinyl benzene and benzoyl peroxide, followed by polymerization at 70 degrees C. Uniform micrometer-sized crosslinked poly(styrene-divinyl benzene) particles of higher surface area were produced by dissolution of the template polystyrene part of the former composite particles with N,N-dimethylformamide. Hydroperoxide conjugated crosslinked poly(styrene-divinyl benzene) particles were produced by ozonolysis of these particles. The effect of ozonolysis conditions, such as exposure time and flow rate of the ozone, on the hydroperoxide conjugation to the crosslinked particles was also studied. Functionalization of the crosslinked poly(styrene-divinyl benzene) particles was performed by graft polymerization of vinylic monomers such as acrylonitrile and chloromethylstyrene on the hydroperoxide conjugated crosslinked particles. This was accomplished by raising the temperature (e.g., 70 degrees C) of deairated acetonitrile dispersions containing the hydroperoxide conjugated particles and the vinylic monomers. The influence of various polymerization parameters on the grafting yield, e.g., monomer concentration, conjugated hydroperoxide concentration, and temperature, was also elucidated.  相似文献   

20.
The imaging of ultrafine Au, Pd, CdS, and ZnS particles prepared in reverse micelles has been studied by atomic force microscopy (AFM). Mica substrates, derivatized with a monolayer of amine or thiol-terminated silanes, were used to immobilize the particles. The substrates were exposed to reverse micellar solutions containing the particles and were then immersed in appropriate solvent media to remove surfactants. This resulted in a partial coating of the surfaces by the particles. The particle size was estimated as the height of protrusion, shown on the AFM images. The size values for the Pd and CdS particles, thus obtained, were found to be almost identical to those obtained by transmission electron microscopy (TEM), whereas those for the Au and ZnS particles were larger than those obtained by TEM. Scanning electron microscopy showed that the Au particles tended to aggregate on the surfaces, while Pd particles were isolated from one another. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号