首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
PEMFC催化剂的研究:自制Pt/C电催化剂的性质   总被引:2,自引:0,他引:2  
研究了一种用于质子交换膜燃料电池(PEMFC)的自制Pt/C电催化剂(标记为THYT-1)的物理化学和电化学性质.将THYT-1电催化剂与E-TEK公司的同类电催化剂的组成、形态及电催化性能进行了比较.单电池测试结果显示, THYT-1的电催化性能优于E-TEK电催化剂. CV测试结果表明CO在这两种电催化剂上的电氧化性能相近;TEM分析表明两种催化剂上Pt晶粒在炭载体上呈均匀分布,平均粒径均为2~3 nm; XPS和XRD测试结果表明两种催化剂中Pt主要以金属态存在.这些数据表明THYT-1催化剂的物理化学性质与E-TEK公司的相类似.  相似文献   

2.
采用化学法制备了乙二胺接枝改性碳纳米管(ED/MWNTs)负载的Pt及Pt-Ru催化剂,并用红外光谱法、透射电镜分析(TEM)及X射线能谱技术对催化剂进行了表征。结果表明:乙二胺对碳纳米管的改性使Pt及Pt-Ru在碳管上的分布更均匀,粒径更小。同时,催化剂对乙醇电催化氧化活性的电化学研究结果表明:乙二胺改性可明显提高Pt-Ru/MWNTs/C 和Pt/MWNTs/C的电催化活性,而且Pt/ED/MWNTs/C的活性甚至比Pt-Ru/MWNTs/C的活性还高。由此,ED/MWNTs作为乙醇电氧化催化剂的载体有着很好的应用前景。  相似文献   

3.
制备方法对PtMo/C催化剂上CO电催化氧化性能的影响   总被引:3,自引:0,他引:3  
李莉  徐柏庆 《物理化学学报》2005,21(10):1132-1137
用化学还原法、胶体法和Adams法制备了PtMo/C电催化剂, 对其物理化学性质及其在CO电氧化反应中的催化性能进行了对比研究. TEM和XRD测试结果表明, 胶体法制备的催化剂颗粒在载体炭上均匀分布, 颗粒粒径约5 nm;由化学还原法制备的颗粒尺寸较大, 而Adams法制备的颗粒尺寸达数十纳米, 并有严重的团聚现象. CO消除伏安法测试结果表明, 三种制备方法中胶体法制备的PtMo/C催化剂具有最高的电化学表面积和电催化活性. 与常用的Pt/C催化剂相比, PtMo/C催化剂中Pt上弱吸附态CO的电氧化均得到了促进, 而强吸附态CO则不受影响. 这些结果表明PtMo颗粒的尺寸分布和在载体上的分散状况是影响PtMo/C催化剂电催化性能的主要因素. 胶体法制备的PtMo/C与常用的PtRu/C相比, 电化学表面积虽然较低, 但在低电势下CO的起始氧化电势只有0.15 V, 而且在0.15~0.50 V之间发生电氧化的CO达到其总量的1/3.  相似文献   

4.
甲醇电氧化催化剂Pt/CeO2-CNTs与PtRu/C的比较研究   总被引:1,自引:0,他引:1  
为认识合成催化剂Pt/CeO2-CNTs与商用催化剂PtRu/C(E-TEK)的催化性能和结构特点, 用CO溶出法和恒电位氧化法比较了这两种催化剂对CO的电氧化活性, 运用循环伏安法和恒电位氧化法比较了这两种催化剂对甲醇的电氧化活性. CO电氧化实验结果表明, PtRu/C上CO的电氧化活性明显优于Pt/CeO2-CNTs; 甲醇电氧化实验结果却表明, Pt/CeO2-CNTs与PtRu/C上甲醇电氧化表观活性相当. 为从结构特点上解释PtRu/C上CO电氧化和甲醇电氧化活性的不一致, 对PtRu/C进行了循环伏安扫描和CO溶出实验. 结果表明, PtRu/C的甲醇电氧化电流之所以没有预期高, 一是由于Pt比表面积不够大, 同时Pt-Ru之间协同作用有待提高. 本研究结果表明, 尽管Ru对Pt上CO电氧化有显著助催化作用, 但要充分发挥其对Pt上甲醇电氧化的助催化作用, 需同时提高Pt表面积和Pt-Ru接触界面. 该结论对设计甲醇电氧化催化剂具有普适意义.  相似文献   

5.
通过低温络合反应制备了高分散高合金化的Pt-Ru固溶体, 并将其均匀地担载在有序介孔碳CMK-3上, 以形成二元复合金属催化剂. XRD谱图表明,fcc结构的Pt原子部分被hcp结构的Ru原子取代形成置换固溶体, 而且几乎没有未形成合金的Ru存在. TEM和XRD研究结果表明, Pt-Ru/CMK-3催化剂中Pt-Ru合金粒子的平均粒径为27 nm, 且具有良好的均一度. 还研究了催化剂对甲醇的电催化氧化性能, 并与E-TEK公司同类催化剂进行了对比, 研究结果表明, Pt-Ru/CMK-3催化剂具有较大的电化学活性面积, 对甲醇的电催化氧化性能和抗CO中毒能力明显优于其它同类催化剂.  相似文献   

6.
 研究了用于直接乙醇燃料电池的自制Pt-Sn/C阳极催化剂对乙醇的电催化氧化性能. 采用直流伏安法和交流阻抗法分析了电池温度和极化电位对乙醇电催化氧化性能的影响,比较了不同温度下甲醇和乙醇通过Nafion 117膜的扩散系数. 结果表明,乙醇通过Nafion 117膜的扩散系数小于甲醇的扩散系数. 伏安法测试结果表明,Pt-Sn/C催化剂对乙醇的催化氧化活性高于商品化的Pt-Ru/C催化剂. 在实验温度范围内,乙醇在Pt-Sn/C催化剂上的初始氧化电位比在Pt-Ru/C催化剂上低约0.2 V; 同一电位下Pt-Sn/C催化剂比Pt-Ru/C催化剂的氧化电流密度高出20~60 mA/cm2,且电流密度的差值随温度的升高而增大. 交流阻抗法测试结果表明,Pt-Sn/C催化剂对乙醇具有更高的催化活性. 在90 ℃下,以1 mol/L的乙醇为燃料,氧气为氧化剂时,Pt-Sn/C催化剂显示出良好的电池性能,电池最高功率密度为44 mW/cm2,而Pt-Ru/C催化剂的电池最高功率密度仅为27 mW/cm2.  相似文献   

7.
乙醇电氧化(EOR)是直接乙醇燃料电池和电解乙醇制氢共有的阳极反应.Au@Pt核壳和AuPt合金是广泛使用的两种电催化材料,迄今尚无两者对EOR性能的对比研究.以CO作为还原剂和淬灭剂合成了近似Pt单层的Au@Pt/C催化剂,作为对照,以NaBH4还原法合成了相同Au∶Pt物质的量比和金属载量的AuPt/C催化剂;运用透射电子显微镜(TEM)、扫描透射电子显微镜-能谱仪(STEM-EDS)、X射线粉末衍射(XRD)和X射线光电子能谱(XPS)等手段综合表征了两者结构之差异,同时以电化学循环伏安法和计时电流法测试了在碱性体系中其对EOR的电催化性能.结果表明,相比于商业化的Pt/C和Au/C,Au@Pt/C和AuPt/C对EOR的活性和稳定性均有着显著提升;Au@Pt/C对EOR的电催化活性和对C-C键断裂能力略优于AuPt/C.双金属催化剂中Au与Pt之间的晶格应力和部分电荷转移等效应可能是其性能提升的主要原因.  相似文献   

8.
以偏钨酸铵微球为前驱体,在不同反应时间和CO/CO_2气氛条件下,通过原位还原碳化反应制备了具有核壳结构碳化钨复合微球。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)等对催化剂的形貌和结构进行了表征分析。硼氢化钠还原法将平均粒径为4.6 nm的Pt纳米粒子均匀分布在其表面,得到核壳结构碳化钨复合催化剂。采用循环伏安和计时电流法研究了在酸性溶液中催化剂对甲醇的电催化氧化性能。结果表明,与Pt/WC-15 h和JM Pt/C催化剂的电化学性能相比,Pt/WC-6 h催化剂对甲醇呈现出更高的电催化氧化活性和稳定性。碳化钨复合微球表面少量WO2成分的存在有利于甲醇在其表面的电催化氧化过程的发生。  相似文献   

9.
采用一种新的调变多元醇制备方法,通过调节碳载体热处理条件,制备得到不同的Pt/C燃料电池催化剂。采用p H计及物理吸附仪表征碳黑表面的含氧官能团和比表面积,利用电感耦合等离子光谱、X射线衍射、透射电镜和循环伏安法分别表征催化剂的成分、物相组成、微观组织形貌和电化学性能,并与进口的Johnson Matthey(JM)Pt/C催化剂的性能进行对比。结果表明:采用调变多元醇法,以400℃热处理碳黑作载体所制备的Pt/C催化剂的电化学比表面积达到83 m2·g-1,质量电流密度为49.03 A·g-1。而进口催化剂JM 20%Pt/C的电化学比表面积为77 m2·g-1,质量电流密度仅11.13 A·g-1,自制催化剂即使Pt载量降低3wt%~4wt%,其电催化活性仍优于进口催化剂。  相似文献   

10.
采用调变的多元醇法制备了高分散的Pt/C, PtRu/C和Ru/C电催化剂. XRD计算结果表明, PtRu/C电催化剂的平均粒径和合金度分别为2.2 nm和71%. 采用电化学方法和原位傅里叶变换红外反射光谱方法(in situ FTIRS)研究了甲醇在3种电催化剂上的吸附氧化过程, 发现PtRu/C对甲醇的催化活性明显高于Pt/C, Ru的加入一方面影响了甲醇在Pt上的解离吸附性能, 另一方面提供了Ru-OH物种, 从而抑制了低电位下电催化剂中毒. 红外光谱研究结果表明, 线性吸附态CO(COL)是主要毒化物种, 反应产物主要是CO2, 还有少量的甲酸甲酯. 根据实验结果讨论了甲醇在PtRu/C电催化剂上的氧化机理.  相似文献   

11.
程璇  马艳芸  齐丽  彭程  陈羚  赵隽  张颖  范钦柏 《电化学》2004,10(2):137-144
采用自设计的特制H-形电解槽模拟单个氢-空气质子交换膜燃料电池运作,并以电化学方法、SEM及XRD等技术研究两种商用催化剂,即碳载铂(Pt/c)和纯铂钌(Pt-Ru)的电催化活性、表面形貌及其结构和寿命,同时对比了两种催化剂分别放在H-形电解槽和常规电解槽中运行情况的测试结果,实验表明,经过H-形电解槽运行后的催化剂,其循环伏安曲线表征氢吸脱的特征峰分别发生了正偏移(Pt/c电极)和负偏移(Pt-Ru电极),且对应的峰电流呈现减小的趋势(特别是Pt/c电极),一氧化碳的毒化造成纯铂钌的电催化活性显著下降,其影响是不可逆的。  相似文献   

12.
A Pt-based electrocatalyst for direct fuel cells, Pt3Ti, has been prepared in the form of nanoparticles. Pt(1,5-cyclooctadiene)Cl2 and Ti(tetrahydrofuran)2Cl4 are reduced by sodium naphthalide in tetrahydrofuran to form atomically disordered Pt3Ti nanoparticles (FCC-type structure: Fm3m; a = 0.39 nm; particle size = 3 +/- 0.4 nm). These atomically disordered Pt3Ti nanoparticles are transformed to larger atomically ordered Pt3Ti nanoparticles (Cu3Au-type structure: Pm3m; a = 0.3898 nm; particle size = 37 +/- 23 nm) by annealing above 400 degrees C. Both atomically disordered and ordered Pt3Ti nanoparticles show lower onset potentials for the oxidation of formic acid and methanol than either pure Pt or Pt-Ru nanoparticles. Both atomically disordered and ordered Pt3Ti nanoparticles show a much lower affinity for CO adsorption than either pure Pt or Pt-Ru nanoparticles. Atomically ordered Pt3Ti nanoparticles show higher oxidation current densities for both formic acid and methanol than pure Pt, Pt-Ru, or atomically disordered Pt3Ti nanoparticles. Pt3Ti nanoparticles, in particular the atomically ordered materials, have promise as anode catalysts for direct fuel cells.  相似文献   

13.
采用一步沉淀法,制备了纳米级Pt-CeO2/C电催化剂.透射电镜和X射线衍射表征结果表明,制备的催化剂Pt颗粒均匀分散于碳载体表面,其粒径主要分布于1.5~2.5 nm.将Pt-CeO2/C催化剂制备成质子交换膜燃料电池膜电极,经循环伏安和单电池极化曲线测试发现,Pt-CeO2/C催化剂性能与Pt/C催化剂的相当.一氧...  相似文献   

14.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

15.
We report the combinatorial and high-throughput optimization of improved ternary Pt alloy electrocatalysts for the oxidation of methanol for use in direct methanol fuel cell (DMFC) anodes. Following up on the discovery of a ternary Pt20Co60Ru20 catalyst with significantly improved electrocatalytic activity for methanol oxidation over standard Pt-Ru catalysts, we optimize the electrocatalytic activity of this composition using a closely sampled Pt-Co-Ru "optimization library". We also screen for compositional and structural stability using high-throughput methods. Composition-activity maps confirmed improved activity in compositional neighborhood of the Pt20Co60Ru20 catalyst. Activity trends of Pt-Ru binary alloys were in excellent agreement with fundamental surface electrochemical studies. Structural and compositional catalyst stability was probed using X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). Combination of the stability-composition and activity-composition maps resulted in "consensus maps" pointing to a new optimized ternary alloy electrocatalyst for methanol electrooxidation with an overall composition of Pt18Co62Ru20.  相似文献   

16.
Sonochemically prepared PtRu (3 : 1) and Johnson Matthey PtRu (1 : 1) were analyzed by X-ray absorption spectroscopy in operating liquid feed direct methanol fuel cells. The total metal loadings were 4 mg cm(-2) unsupported catalysts at the anode and cathode of the membrane electrode assembly. Ex situ XRD lattice parameter analysis indicates partial segregation of the Ru from the PtRu fcc alloy in both catalysts. A comparison of the in situ DMFC EXAFS to that of the as-received catalyst shows that catalyst restructuring during DMFC operation increases the total metal coordination numbers. A combined analysis of XRD determined grain sizes and lattice parameters, ex situ and in situ EXAFS analysis, and XRF of the as-received catalysts enables determination of the catalyst shell composition. The multi-spectrum analysis shows that the core size increases during DMFC operation by reduction of Pt oxides and incorporation of Pt into the core. This increases the mole fraction of Ru in the catalyst shell structure.  相似文献   

17.
A randomly mixed monodispersed nanosized Pt-Ru catalyst, an ultimate catalyst for CO oxidation reaction, was prepared by the rapid quenching method. The mechanism of CO oxidation reaction on the Pt-Ru anode catalyst was elucidated by investigating the relation between the rate of CO oxidation reaction and the current density. The rate of CO oxidation reaction increased with an increase in unoccupied sites kinetically formed by hydrogen oxidation reaction, and the rate was independent of anode potential. Results of extended X-ray absorption fine structure spectroscopy showed the combination of N(Pt-Ru)/(N(Pt-Ru) + N(Pt-Pt)) ? M(Ru)/(M(Pt) + M(Ru)) and N(Ru-Pt)/(N(Ru-Pt) + N(Ru-Ru)) ? M(Pt)/(M(Ru) + M(Pt)), where N(Pt-Ru)(N(Ru-Pt)), N(Pt-Pt)(N(Ru-Ru)), M(Pt), and M(Ru) are the coordination numbers from Pt(Ru) to Ru(Pt) and Pt (Ru) to Pt (Ru) and the molar ratios of Pt and Ru, respectively. This indicates that Pt and Ru were mixed with a completely random distribution. A high-entropy state of dispersion of Pt and Ru could be maintained by rapid quenching from a high temperature. It is concluded that a nonelectrochemical shift reaction on a randomly mixed Pt-Ru catalyst is important to enhance the efficiency of residential fuel cell systems under operation conditions.  相似文献   

18.
采用脉冲微波辅助化学还原法制备了质子交换膜燃料电池(PEMFC)用Pt/C 催化剂. 通过透射电镜(TEM)和X射线衍射(XRD)等分析技术对催化剂的微观结构和形貌进行了表征, 并利用循环伏安(CV)、线性扫描(LSV)和恒电位测量等方法评价了催化剂催化氧还原性能. 在此基础上制备了膜电极(MEA)并组装成单电池, 考察了制备的Pt/C 催化剂作为阴极催化剂材料的电催化性能. 结果表明, 脉冲微波辅助化学还原法是一种制备PEMFC催化剂的有效方法, 溶液pH值和微波功率对Pt 颗粒直径和分散有重要影响. TEM和XRD结果显示, 当溶液pH值为10 且微波功率为2 kW时, Pt 纳米粒子较均匀地分散在碳载体上, 粒径分布在1.3-2.4 nm之间, 平均粒径为1.8 nm. CV、LSV和恒电位测试结果表明, 该催化剂电化学比表面积(ESA)为55.6 m2·g-1, 具有良好的催化氧还原反应活性和稳定性. 单电池测试结果表明, 在溶液pH值为10条件下, 微波功率为2 kW时制备的催化剂作阴极催化剂时, 单电池最高功率密度为2.26 W·cm-2·mg-1, 高于微波功率为1 kW时的最高功率密度(2.15 W·cm-2·mg-1)和Johnson Matthey催化剂的最高功率密度(1.89 W·cm-2·mg-1).  相似文献   

19.
碳纳米管负载铂催化剂的制备、结构及电化学加氢特性   总被引:6,自引:0,他引:6  
采用浸渍沉淀法制备Pt/CNTs和Pt/c催化剂,并对其结构及电催化性能进行比较。表征.实验表明,以碳纳米管作催化剂载体可使催化剂的负载量,载体上铂的分散度以及其活性中心大大提高.与Pt/C(Johnson Matthey)催化剂相比,Pt/CNTs的电化学性能表现出更大的活性.碳纳米管作为阴极材料在质子交换膜燃料电池加氢反应器合成化学品中的作用十分明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号