首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potentially extreme heterogeneity of polymer micro‐ and macrostructures has been demonstrated and a means for characterizing them has been suggested. To ensure that all possible microstructures, such as diad stereosequences in vinyl homopolymers and monomer sequences in copolymers, including their locations along polymer chains, that is, all macrostructures, are represented, it became necessary to generate samples with huge quantities (many many tons) of constituent polymer chains. This suggested a practical need for distinguishing between polymer samples with chains that have homogeneous and heterogeneous populations of micro‐ and macrostructures. A combination of high resolution 13C‐nuclear magnetic resonance to determine the types and amounts of constituent short‐range microstructures, and dilute solution electrical birefringence or Kerr effect measurements to locate them along the polymer chains has been suggested, and may be able to achieve this distinction. This combination of techniques is required to reduce the innumerably large numbers of different possible polymer macrostructres whose Kerr constants would have to be calculated, for comparison to the observed values. The ability to determine polymer macrostructures is critical to the development of relevant, more meaningful, and therefore, improved structure–property relations for polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 409–414  相似文献   

2.
In this brief report, we demonstrate that Kerr effect measurements, which determine the excess birefringence contributed by polymer solutes in dilute solutions observed under a strong electric field, are highly sensitive to and capable of determining their microstructures, as well as their locations along the macromolecular backbone. Specifically, using atactic triblock copolymers with the same overall composition of styrene (S) and p-bromostyrene (pBrS) units, but with two different block arrangements, that is, pBrS90-b-S120-b-pBrS90 (I) and S60-b-pBrS180-b-S60 (II), which are indistinguishable by NMR, we detected a dramatic difference in their molar Kerr constants (mK), in agreement with those previously estimated. Although similar in magnitude, their Kerr constants differ in sign, with mK(II) positive and mK(I) negative. In addition, S/pBrS random and gradient copolymers synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization exhibit a heretofore unexpected enhanced enchainment of racemic (r) pBrS-pBrS diads. Comparison of their observed and calculated mKs suggests that the gradient S/pBrS copolymers possess an unanticipated additional gradient in stereosequence that parallels their comonomer gradient, that is, as the concentration of pBrs units decreases from one end of the copolymer chain to the other, so does the content of r diads. This conclusion could only be reached by comparison of observed and calculated Kerr effects, which access the global properties of macromolecules, and not NMR, which is only sensitive to local polymer structural environments, but not to their locations on the copolymer chains. Molar Kerr constants are characteristic of entire polymer chains and are highly sensitive to their constituent microstructures and their distribution along the chain. They may be used to both identify constituent microstructures and locate them along the polymer chain, thereby enabling, for the first time, characterization of their complete macrostructures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

3.
In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf‐PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and defined with state‐of‐the‐art characterization techniques—for example real‐time 1H NMR spectroscopy monitoring of the EO polymerization kinetics—this emerging class of polymers embodies a powerful platform for bio‐ and drug conjugation.  相似文献   

4.
Previous routes to polymers with mono‐alkylated bithiophenes have proceeded through polymerization of monoalkyl‐2,2′‐bithiophene monomers through oxidative or AB‐type cross‐coupling polymerizations. The resulting polymer regiochemistry affects both the location and orientation of the polymer side‐chains. In contrast, AABB‐type cross‐coupling polymerizations can control the location and in some cases the orientation of the side‐chains. To study how this control can impact polymer properties, two poly(monodecyl‐2,2′‐bithiophene) polymers have been synthesized through Stille AABB‐type polycondensations of 2,5‐bis(trimethylstannyl)thiophene with different monomers. The alkyl side‐chains are located on every other thiophene, but polymer 1 consists of both head‐to‐tail and head‐to‐head dyads, whereas polymer 2 is made up of only head‐to‐head dyads. 1H NMR, 13C NMR, and heteronuclear single quantum correlation spectroscopy are used to confirm and contrast the polymer regiochemistries. The physical properties of the two polymers are analyzed using UV–vis spectroscopy, differential scanning calorimetry, and grazing‐incidence X‐ray diffraction. Polymer 2 is found to display significantly more aggregation in solution than 1, and it displays different thermal properties. The film properties of polymers 1 and 2, however, are very similar, with nearly identical UV–vis profiles and d‐spacing values as determined by grazing incidence X‐ray diffraction. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are considered promising “green” alternatives to synthetic polymers because they are bio-derived, biodegradable and biocompatible. The properties of bacterial PHA copolymers depend on their microstructures, which can be modified with the use of different fermentation processes and feed materials. Thus, it is desirable to have an improved testing method for the determination of PHA microstructures. In this work, a detailed NMR analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microstructure was made. Previously only two of the hydroxyvalerate 13C NMR peaks have been assigned at the triad level. In this work, three of the 13C hydroxyvalerate peaks and two of the hydroxybutyrate peaks were found to be split into four peaks each due to comonomer sequence effects. Using eight copolymer samples with a wide compositional range, we were able to assign all these peaks to B-centered and V-centered triad sequences. Through curve deconvolution, the triad intensities were determined. These triad sequence intensities can then be analyzed via both the first-order Markovian and two-component Bernoullian models to obtain more in-depth information on copolymer composition and comonomer reactivities.  相似文献   

6.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

7.
An instrument for measuring the oscillatory electric birefringence properties of synthetic polymer dissolved in organic solvents has been designed and constructed. Novel features of the design include an in situ variable inter-electrode spacing Kerr cell and a double-beam optical train. The accessible frequency range extends from below 1 Hz to at least 100 kHz, with electric fields variable up to approximately 6000 V cm?1 (peak-to-peak). Measurements are made with a powerful computerized data acquisition and processing system, based on an approach previously used for viscoelastic and oscillatory flow birefringence experiments. Preliminary results on a viscous liquid, Aroclor-1248, indicate that time-temperature superposition holds to reduced frequencies of at least 100 MHz. Comparison with theoretical predictions for rigid rod suspensions suggests that this liquid exhibits relaxation behavior with a time constants of ca. 6 ns at 25.00°C.  相似文献   

8.
The functionalization of polymeric organolithiums (PLi) with 3,4‐epoxy‐1‐butene (EPB) in a hydrocarbon solution yielded the corresponding hydroxybutene‐functionalized polymers in high yields (>95%). Three modes of addition of PLi to EPB were observed (1,4, 3,4, and 4,3). The products and chain‐end structures were characterized by 1H NMR, 13C NMR, attached‐proton‐test 13C NMR, calculated 13C NMR chemical shifts, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). The regioselectivity of the addition depended on the PLi chain‐end structure, the reaction conditions, and the addition of lithium salts or Lewis bases. In the absence of additives, the functionalization of poly(styryl)lithium (PSli) produced equal amounts of 1,4‐, 3,4‐, and 4,3‐addition, as determined by quantitative 13C NMR analysis. The use of a low temperature (6 °C), inverse addition, the addition of triethylamine (TEA; [TEA]/[PSLi] = 20) as a Lewis base, or dienyllithium chain ends produced polymers with only the 1,4‐addition product. Mild dehydration of the hydroxybutene‐functionalized polymer with p‐toluenesulfonic acid produced the corresponding diene‐functionalized macromonomer, as shown by MALDI‐TOF MS. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 947–957, 2003  相似文献   

9.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

10.
Cationic PdII monophosphine complexes derived from α‐ and β‐cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to 13C NMR studies with 13C‐enriched CO, both complexes catalyze the formation of CO‐free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.  相似文献   

11.
This is the first report concerning the use of vinyl polyperoxide, namely, poly(methyl methacrylate) peroxide (PMMAP), as a thermal initiator for the synthesis of active polymer PMMAP‐PS‐PMMAP by free‐radical polymerization with styrene. The polymerizations have been carried out at different concentrations of macroinitiator PMMAP. The active polymers have been characterized by 1H NMR, DSC, thermogravimetric analysis, and gel permeation chromatography. PMMAP‐PS‐PMMAP is further used as the thermal macroinitiator for the preparation of another block copolymer, PMMA‐b‐PS‐b‐PMMA, by reacting the active polymers with methyl methacrylate. The block copolymers have been synthesized by varying the concentrations of the active polymers. The mechanism of block copolymers has been discussed, which is also supported by thermochemical calculations. Studies on the surface texture and morphology of the block copolymer of polystyrene (PS) and PMMA material have been carried out using scanning electron microscopy. Furthermore, in this article, a blend of the same constituent materials (PS and PMMA) in proportions (v/v) similar to that contained in block copolymers has been formulated, and the morphology and surface textures of these materials were also investigated. A comparative microscopical evaluation between two processing methods was done for a better understanding of the processing route dependence of the microstructures. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 546–554, 2001  相似文献   

12.
The first‐ and second‐generation dendronized polymers containing azobenzene mesogen were designed and successfully synthesized via free radical polymerization. The chemical structures of the monomers were confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transition behaviors were studied using differential scanning calorimetry, polarized light microscopy, and small‐angle X‐ray scatter experiments. The experiment results revealed that the first‐generation dendronized polymer exhibited liquid crystalline behavior of the conventional side‐chain liquid crystalline polymer with azobenzene mesogen, that is, the polymer exhibited smectic phase structure at lower temperature and nematic phase structure at higher temperature. However, the second‐generation dendronized polymers exhibited more versatile intriguing liquid crystalline structures, namely smectic phase structure at lower temperature and columnar nematic phase structure at higher temperature, and moreover, the phase structure still remained before the decomposition temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1149–1159, 2010  相似文献   

13.
Epichlorohydrin was polymerized using boron trifluoride etherate or stannic chloride as initiators in presence of diols. The molecular weight of the polymer increased with increase in the ratio of epichlorohydrin to the diol in the reaction mixture. The polymers were characterized by IR, proton NMR and 13C NMR analysis. The terminal hydroxyl groups of the polymers were characterized by derivatizing them using trifluoro acetic anhydride and analyzing the resulting ester by NMR. Both primary and secondary hydroxyls were present in the polymer. The primary hydroxyl terminals of the polyepichlorohydrin (PECH) prepared using stannic chloride initiator were twice the amount of that present in the polymer prepared using BF3 etherate initiator. The 13C NMR spectrum of PECH prepared using BF3 etherate indicates that the polymer backbone is rich in H-T diad. Both cationic and co-ordination mechanisms operate during the polymerization in the presence of SnCl4 and the 13C NMR spectrum of the polymer showed more of T-T and H-H sequences.  相似文献   

14.
A modular approach toward the synthesis of polymers containing dendron groups as side chains is developed using the Diels–Alder “click” reaction. For this purpose, a styrene‐based polymer appended with anthracene groups as reactive side chains was synthesized. First through third‐generation polyester dendrons containing furan‐protected maleimide groups at their focal point were synthesized. Facile, reagent‐free, thermal Diels–Alder cycloaddition between the anthracene‐containing polymer and latent‐reactive dendrons leads to quantitative functionalization of the polymer chains to afford dendronized polymers. The efficiency of this functionalization step was monitored using 1H and 13C NMR spectroscopy and FTIR and UV–vis spectrometry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 410–416, 2010  相似文献   

15.
Core‐cleavable star polymers were synthesized by the coupling of living anionic poly(alkyl methacrylate) arms with either dicumyl alcohol dimethacrylate (DCDMA) or 2,5‐dimethyl‐2,5‐hexanediol dimethacrylate (DHDMA). This synthetic methodology led to the formation of star polymers that exhibited high molecular weights and relatively narrow molecular weight distributions. The labile tertiary alkyl esters in the DCDMA and DHDMA star polymer cores were readily hydrolyzed under acidic conditions. High‐molecular‐weight star polymer cleavage led to well‐defined arm polymers with lower molecular weights. Hydrolysis was confirmed via 1H NMR spectroscopy and gel permeation chromatography. Thermogravimetric analysis (TGA) of the star polymers demonstrated that the DCDMA and DHDMA star polymer cores also thermally degraded in the absence of acid catalysts at 185 and 220 °C, respectively, and the core‐cleavage temperatures were independent of the arm polymer composition. The difference in the core‐degradation temperatures was attributed to the increased reactivity of the DCDMA‐derived cores. TGA/mass spectrometry detected the evolution of the diene byproduct of the core degradation and confirmed the proposed degradation mechanism. The DCDMA monomer exhibited a higher degradation rate than DHDMA under identical reaction conditions because of the additional resonance stabilization of the liberated byproduct, which made it a more responsive cleavable coupling monomer than DHDMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3083–3093, 2003  相似文献   

16.
A new chiral half‐titanocene complex, [CpTiCl2(O‐(S)?2‐Bu)], is synthesized and characterized by 1H and 13C NMR spectroscopy. This complex is employed for the coordination polymerization of n‐butyl and n‐hexyl‐ isocyanate leading to chiral polymers, as revealed by their CD spectra. Only the left‐handed helix is produced, due to the chiral (S)?2‐butoxy group, which is bound to the polymer chain end. The polymerization of 3‐(triethoxysilyl)propyl isocyanate produces less soluble polymers. On the other hand, phenyl isocyanate reacts slowly with the complex leading quantitatively and selectively to triphenyl isocyanurate. 2‐Ethylhexyl isocyanate is slowly and selectively cyclotrimerized in the presence of the half‐titanocene complex. However, a statistical copolymer of 2‐ethylhexyl isocyanate and hexyl isocyanate is produced. The reaction of benzyl isocyanate with the complex leads to a mixture of low molecular weight polymer and cyclotrimer. The polymers are characterized using SEC, NMR, and CD spectroscopy and their thermal properties are investigated by TGA/DSC analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2141–2151  相似文献   

17.
An easy synthetic procedure for soluble poly[3‐(4‐alcoxyphenyl)thiophene]s is reported. The polymers present a high regioregularity degree as determined by both UV–vis spectra and 1H and 13C NMR analysis. Furthermore, X‐ray powder diffraction analysis performed on films of the polymers suggests a π‐stacked packing structure of the macromolecules. Electrical characterization was performed on one of the synthesized polythiophenes on both undoped and doped (with FeCl3 or iodine) films. The conductivity and charge‐carrier mobility were assessed by current–voltage and field effect measurements. Well‐structured polymer films were obtained simply via spin coating from chloroform solutions and without the need of further processing, unlike other regioregular polythiophenes reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1758–1770, 2007  相似文献   

18.
The conjugation of hydrophilic low‐fouling polymers to therapeutic molecules and particles is an effective approach to improving their aqueous stability, solubility, and pharmacokinetics. Recent concerns over the immunogenicity of poly(ethylene glycol) has highlighted the importance of identifying alternative low fouling polymers. Now, a new class of synthetic water‐soluble homo‐fluoropolymers are reported with a sulfoxide side‐chain structure. The incorporation of fluorine enables direct imaging of the homopolymer by 19F MRI, negating the need for additional synthetic steps to attach an imaging moiety. These self‐reporting fluoropolymers show outstanding imaging sensitivity and remarkable hydrophilicity, and as such are a new class of low‐fouling polymer for bioconjugation and in vivo tracking.  相似文献   

19.
20.
In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid‐state NMR measurements. Both the 13C and the 1H NMR resonances were assigned using a combination of 1D cross‐polarization magic angle spinning, 2D 13C–1H heteronuclear correlation spectra and 1H–1H single quantum–double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号