首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Monodelphis domestica was further characterized as a model for photobiological studies by measuring the excision repair capabilities of this mammal's cells both in vivo and in vitro. Excision repair capability of the established marsupial cell line, Pt K2 ( Potorous tridactylus ), was also determined. In animals held in the dark, we observed that ˜50% of the dimers were removed by 12 and 15 h after irradiation with 400 J m−2 and 600 J m−2, respectively, from an FS-40 sunlamp (280–400 nm). Cells from primary cultures of M. domestica excised ˜50% of the dimers by 24 h after irradiating with 50 J m−2 and 36 h after exposure to 100 J m−2 with no loss of dimers observed 24 h following a fluence of 300 J m−2. Pt K2 cells were observed to have removed -50% of the dimers at -12 h after 50 J m−2 with only -10% of the dimers removed at 24 h following 300 J m−2. The observed loss of pyrimidine dimers from epidermal DNA of UV-irradiated animals and from fibroblasts in culture, held in the dark, suggests that these marsupial cells are capable of DNA excision repair.  相似文献   

2.
Abstract— Excision repair of DNA damage by UV has been assessed in normal human fibroblasts in culture by measuring unscheduled DNA synthesis. Dose response experiments indicated that the same chromophore was involved in UV-induced damage and excision repair at three different wavelengths between 260 and 300 nm. Action spectra for unscheduled DNA synthesis were determined at wavelengths between 260 and 320 nm 30 min after irradiation using 2 doses of UV, 100 J m-2and 10Jm-2. Experiments at the lower dose were carried out because it appeared that repair was saturated with the higher dose at 260 and 280 nm. To explore this part of the spectrum further, experiments were performed with different doses at 260 and 280 nm and unscheduled DNA synthesis assessed 30 min and 24 h after irradiation. At 24 hr after irradiation a significantly greater amount of unscheduled DNA synthesis occurred at 280 nm. It is suggested, therefore, that both DNA and protein are concerned in the absorption of UV which leads to DNA damage and excision repair.  相似文献   

3.
Cell division and DNA synthesis were studied during axenic growth following 254 nm ultraviolet light (UV) irradiation of a repair-proficient parental strain ( rad+ , D10 colony formation = 195 J/m2) and two repair mutants ( rad C. D10= 50 J/m2; rad B. D10= 5 J/m2) of Dictyostelium discoideum. Isopycnic CsCI gradients were used to distinguish uptake of labeled precursors into nuclear (n) and mitochondrial (m) DNA, using Netropsin to enhance the density resolution. In all strains, m-DNA synthesis was inhibited to a lesser extent than was n-DNA synthesis. For rad C, which has been shown in other experiments to be slow in incision and dimer removal, the UV-induced lags in division and n-DNA synthesis were longer than for rad+. However, rad B showed a more complex response. Although brief division lags were observed for < 10 J/m2, little immediate division lag was detected at greater fluences. Instead, a brief period of cell multiplication of up to but not exceeding two-fold occurred, followed by a cessation of division, and then by lysis. Fluences that yielded extensive lags in n-DNA synthesis in rad- and rad C resulted in little detectable immediate postirradiation lag in n-DNA synthesis in rad B. However, later in the postirradiation period, when DNA synthesis had resumed in rad+ and rad C. it gradually declined to near zero in rad B. We conclude: (1) that the more extended lag in division and n-DNA synthesis in rad C is consistent with its slower rate of excision repair, and (2) that rad B contains a defect resulting in less initial blockage of DNA replication by UV lesions.  相似文献   

4.
Abstract— ICR 2A frog and normal human skin fibroblasts were exposed to either 5 J/m2 of 254 nm UV or 50 kJ/m2 of the Mylar-filtered solar UV wavelengths produced by a fluorescent sunlamp. Following these approximately equitoxic treatments, cells were incubated in medium containing the DNA synthesis inhibitors hydroxyurea (HU) and 1–β-D-arabinofuranosyl cytosine (ara C) for 0–20 min (human fibroblasts) or 0–4 h (frog cells) to accumulate DNA breaks resulting from enzymatic incision during excision repair. It was found that breaks were formed in human cells at about a 200-f-old higher rate compared with the ICR 2A cells indicating a relatively low capacity for excision repair in the frog cells. In addition, the rate of DNA break formation in solar UV-irradiated cells was only one-third of the level detected in 254 nm-irradiated cells. This result is consistent with the conclusion that the pathway(s) involved in the repair of solar UV-induced DNA damages differs from the repair of lesions produced in cells exposed to 254 nm UV.  相似文献   

5.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

6.
PHOTOINDUCTION OF PROTOPERITHECIA IN NEUROSPORA CRASSA BY BLUE LIGHT   总被引:7,自引:0,他引:7  
Blue light induces the formation of Neurospora crassa protoperithecia.This photoinduction is completed in less than 24 h. Its threshold is about 4.2 J/m2. Red light is ineffective. The Bunsen-Roscoe law is obeyed at the fluence of 12.6 J/m2 for fluence rates from 5.25 × 10 2 to 1.05 W/m2.  相似文献   

7.
Abstract— We measured excision repair of ultraviolet radiation (UVR)-induced pyrimidine dimers in DNA of the corneal epithelium of the marsupial, Monodelphis domestica , using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that 100 J -2 of UVR from aFS–40 sunlamp(280–400 nm) induced an average of 2.2 ± 0.2 times 10-2 endonuclease-sensitive sites per kilobase (ESS/kb) (pyrimidine dimers) and that ∼ 50% of the dimers were repaired within 12 h after exposure. We also determined that an exposure of 400 J m-2 was needed to induce comparable numbers of pyrimidine dimers (2.5 times 10-2) in the DNA of skin of M. domestica in vivo . In addition, we found that 50% of the dimers were also removed from the epidermal cells of M. domestica within 12 h after exposure. A dose of 100 J m-2 was necessary to induce similar levels of pyrimidine dimers (2.0 ± 0.2 times 10-2) in the DNA of the cultured marsupial cell line Pt K2 ( Potorous tridactylus ).  相似文献   

8.
9.
Abstract Relative to their L5178Y-S counterparts, L5178Y-R cells have an impaired capacity to form patches in DNA after exposure to UVC radiation. The photolysis of 5'-bromodeoxyuridine (BrdUrd) incorporated into DNA was used to estimate the number of 'repair patches'formed in response to a 254 nm UV (UVC) exposure. L5178Y-S cells, typical of rodent cell lines, formed a small number of patches in exposed DNA (1-2 patches per 1 times 108 dalton during a 6 h recovery after an exposure of 20 J/m2). In contrast, DNA extracted from L5178Y-R cells exposed to UVC and subsequently incubated with BrdUrd for 6 h showed no evidence of BrdUrd incorporation indicating no capacity to form sites of repair (fewer than 0.5 sites of BrdUrd incorporation per 1 times 108 dalton). Moreover, in L5178Y-R cells high fluences of UVC caused an extensive DNA degradation. Such degradation was not observed in L5178Y-S cells during the 24-h post-exposure period. These results are consistent with the notion that L5178Y-R cells have a reduced capacity to repair DNA damage induced by UVC radiation.  相似文献   

10.
POSTIRRADIATION PROPERTIES OF A UV-SENSITIVE VARIANT OF CHO   总被引:1,自引:0,他引:1  
Abstract A UV-hypersensitive mutant of Chinese hamster ovary (CHO) cells, termed 43-3B, has been used in a comparative study with the wild type CHO in order to determine the involvement of repair in several postirradiation phenomena. 43-3B has the same growth rate and chromosome number as the wild type CHO-9. It is hypersensitive to UV irradiation (D0 of 0.3 J/m2 as compared to 3.2 J/m2 for the wild type). 43-3B shows only about 17% of the UV-stimulated unscheduled DNA repair synthesis of CHO-9 as measured by autoradiography. When breaks in supercoiled chromatin are measured after UV by the nucleoid sedimentation method, the mutant appears to be capable of carrying out only limited incision. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line, suggesting that the removal of UV-induced replication blocks by excision repair is the most important factor in allowing recovery of UV-inhibited DNA synthesis. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild type CHO-9, but little recovery was seen in 43-3B. This indicates that excision repair capability can also be important in split-fluence recovery.  相似文献   

11.
Abstract— Previous work obtained from Chinese hamster V-79 cells indicated that, immediately following exposure, UV-induced lesions acted as blocks to elongation of nascent strands, but gradually lost that ability over a 10 h period after exposure to 10 J/m2. The work reported herein attempted to examine possible cell cycle mediated alterations in the recovery of DNA synthesis. Kinetic incorporation of radiolabeled thymidine studies indicated that there may have been a more rapid recovery of DNA synthesis in cells irradiated in G1 or G2 vs cells irradiated in S phase. DNA fiber autoradiograms prepared from synchronous cells indicated that after irradiation in any phase of the cell cycle, the length of newly synthesized DNA was equal to control lengths 1 h after exposure to 5.0 J/m2 (or 1 h after entering S phase for cells irradiated in G1 or G2). This observed recovery was not solely due to an excision process. No cell cycle mediated difference in the number of dimers induced or removed as a function of cell cycle position was observed. These results appear to be consistent with a continuum of effects, with initiation effects dominating the response at low fluences, gapped synthesis at intermediate fluences and elongation inhibition at high fluences. The fluences at which each event dominates may be cell-line specific.  相似文献   

12.
Abstract— Thc frequency of spontaneous and ultraviolet radiation (UVR)-induced mutation at the hprt locus was determined in control and denV-transfected, repair-proficient murine fibroblasts. Control cells removed an average of 25% of pyrimidine dimers induced by exposure to 150 J/m2UVR from an FS40 sunlamp within 24 h; under the same conditions of induction and repair, denV-transfected cells removed an average of 71% of pyrimidine dimers. Control cells were somewhat more resistant than denV-transfected cells to killing by UVR. The average frequency of spontancous mutation at the hprt locus for control and denV-transfected cells was 3 and 15 6-thioguanine (6-TG)-resistant colonies per 106 surviving cells, respectively; there was no statistically significant difference between control and dcnV-transfected cells. However, after exposure to 75 or 150 J/m2 UVR, denV-transfected cells had a significantly lower frequency of mutation to 6-TG resistance. After exposure to a fluence of 75 J/m2, the average frequency of UVR-induced mutation at the hprt locus was 166 mutant colonies per loh surviving cells for control cells and 92 mutant colonies for denV-transfectcd cells; after 150 J/m2, control cells had 205 6-TG-resistant colonies per 106 cells, while dmV-transfected cclls had 61 mutant colonies. These results demonstrate that UVR-induced pyrimidine dimers are mutagenic photoproducts in mammalian cells.  相似文献   

13.
Abstract The rate of excision of sunlight-induced pyrimidine dimers in DNA of exposed human cells was determined. Two normal excision repair-proficient human diploid fibroblast strains (WS-1 and KD) and a repair-deficient strain (XP12BE, group A) maintained in a nondividing state were exposed to summer noon-time sunlight for times (5 and 20 min) that induced numbers of dimers equivalent to far UV (254 nm) exposures of 1 and 4 J/m2. Pyrimidine dimers were quantified in extracted DNA using a U V-endonuclease-alkaline sedimentation assay. The excision rates of these dimers were similar to those observed for the excision of UV-induced pyrimidine dimers. No sunlight-induced inhibition or stimulation of DNA repair was observed in either strain at these low exposures.  相似文献   

14.
REPAIR OF CYCLOBUTANE DIMERS AND (6–4) PHOTOPRODUCTS IN ICR 2A FROG CELLS   总被引:7,自引:0,他引:7  
Abstract— The removal of cyclobutane dimers and Pyr(6–4)Pyo photoproducts from the DNA of UV-irradiated ICR 2A frog cells was determined by radioimmunoassay. In the absence of photoreactivat-ing light, 15% of the cyclobutane dimers and 60% of the (6–4) photoproducts were removed 24 h post-irradiation with 10 J m−2, Exposure to 30 kJ m−2 photoreactivating light resulted in removal of 80% of the cyclobutane dimers and an enhanced rate of repair of (6–4) photoproducts, resulting in a loss of 50% of these lesions in 3 h. The preferential removal of (6–4) photoproducts by excision repair resembles previously published data for mammalian cells.  相似文献   

15.
Abstract. The respiration rates and respiratory control ratios of isolated bean mitochondria have been measured following exposure to 0, 150, 300 and 900 J/m2 of far UV radiation (190–300 nm) from a mercury vapour light source with 90% total radiant intensity at 254 nm. Loss of respiratory control occurred at 150 J/m2 and inhibition of respiration was significant at the highest exposure dosage. The uptake of both 45Ca and 85Sr have been measured following a 10min incubation of isolated mitochondria with 2 m M cation. Significant decreases in cation accumulation were observed following exposure to 900 J/m2. The effect seemed to be associated with loss of active transport of the ions as a result of respiratory uncoupling or reduced electron transport. There was no significant effect of storage on respiration or ion transport nor was there any indirect effect of irradiated suspending medium on mitochondria.  相似文献   

16.
Abstract— A UV-specific endonuclease was used to monitor the presence of UV-induced pyrimidine dimers in the DNA of Chlamydomonas reinhardi . All of the dimers induced by 50 J/m2 of 254 nm light are removed by a 2 h exposure to photoreactivating light. Nearly all of the dimers are removed by the wild-type strain of Chlamydomonas upon incubation for 24h in the dark. Two UV-sensitive mutants, UVS 1 and UVS 6, are deficient in removal of dimers in the dark. These results are interpreted to mean that Chlamydomonas has an excision-repair pathway for coping with UV-induced damage.  相似文献   

17.
Abstract— XP4L0, a xeroderma pigmentosum complementation group A strain, exhibits very limited DNA repair activity. It has extreme sensitivity to UV (254 nm) as determined by colony forming ability. The rate of loss of UV (1 J/m2)-induced pyrimidine dimers from populations of quiescent, nondividing XP4LO cells was determined and found to be slower than that observed for other group A strains (XP25R0, XP12BE, XP8LO). The extreme UV-sensitivity is also exhibited by the nondividing cells in a survival assay that employs nondividing cell populations and does not involve cell reproduction. This result suggests that the extreme sensitivity measured previously by colony-forming ability (a cell-reproduction assay) is due to the excision repair defect alone and not to an additional post-replication repair defect. The very limited excision allows for an accurate definition of target size for inactivation of nondividing cells, about 1 pyrimidine dimer per 105 base pairs, and when compared to results observed for other XP-A strains, provides further evidence that even though excision repair in group A is severely limited, it has biological significance.  相似文献   

18.
Abstract— The specific heterodikaryon complementation method enabled us to assign three patients with mild xeroderma pigmentosum (XP) symptoms (XP25KO, XP27KO, XP28KO) to complementation group F. UV-induced unscheduled DNA synthesis (UDS) remained unnormalized in the heterodikaryons between either of the above three XP strains and the reference group F XP3YO. All these particular XP strains as well as XP3YO exhibited an equally low level of10–15% UDS by a 3 h [3H]-thymidine labeling following 10 J/m2 254 nm UV, while they attained 60% UDS of normal at an extended time of 25 h. The present group F strains were 3 and 1.5 times as sensitive to the lethal effect of UV as normal and XP group E cells, respectively, based on the mean lethal dose ( Do ) comparison. Normal cells had the biphasic time-UDS kinetics of early rapid and late slow repair. Characteristically, however, all of the present group F strains were defective in only early rapid repair, but normally proficient in slow repair.  相似文献   

19.
Abstract— The effects of photodynamic therapy (PDT) on normal brain tissue and depth of brain necrosis were evaluated in rats receiving 2.5 mg/kg aluminum phthalocyanine tetrasulfonate. Twenty-four hours later brains were irradiated with 675 nm light at a power density of 50 mW/cm2 and energy doses ranging from 1.6 to 121.5 J/cm2. Brains were removed 24 h after PDT and evaluated microscopically. When present, brain lesions consisted of well-demarcated areas of coagulation necrosis. When plotting the depth of necrosis against the natural log of energy dose, the data fit a piecewise linear model, with a changepoint at 54.6 J/cm2 and an x intercept of 7.85 J/cm2. The slopes before and after the changepoint were 2.04 and 0.21 mm/In J cm-2, respectively. The x intercept suggests a minimum light dose below which necrosis of normal brain will not occur, whereas the changepoint indicates the energy density corresponding to an approximate maximum depth of necrosis.  相似文献   

20.
Abstract— A Xenon-chloride excimer laser emitting energy at 308 nm was used to induce single-strand breaks (SSBs, frank breaks plus alkali-labile lesions as assayed by alkaline sucrose sedimentation techniques) in purified DNA from Bacillus subtilis . A fluence response study and a peak pulse intensity study were performed. At a pulse energy of 0.1 mJ/pulse, the radiation induced SSBs in a linear fashion (91 SSB/108 Da per MJ/m2) to a maximum exprimental fluence of 1.28 MJ/m2. The pulse intensity study showed that there were no significant changes in DNA breakage (105 SSB/108 Da) between 2.93 times 109 and 5.86 times 1011 W/m2 (0.11 and 22.0 mJ/pulse) at a constant total fluence of 1.1 MJ/m2 (27000 mJ dose). This study has verified and extended previous work by quantifying the yield of SSBs induced in DNA by this laser radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号