首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite film modified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrode surface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the transgenic corn, with a detection limit of 2.8× 10^-12 mol/L of target sequence.  相似文献   

2.
Although much effort has been focused on the preparation of stable amorphous calcium phosphate (ACP) nanoparticles in aqueous solution, the redispersibility and long-term stability of ACP nanoparticles in aqueous solution remains an unresolved problem. In this work, stable colloidal ACPs were prepared by using an organic bisphosphonate (BP) as a sterically hindered agent in aqueous solution. The harvested calcium phosphate nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). ICP-AES, FTIR and XRD results suggested the particles were ACP. DLS and TEM results indicated that the size of the ACP nanoparticles were in the range of 60 nm with a spherical morphology. The resulting calcium phosphate nanoparticles retained its amorphous nature in aqueous solution for at least 6 months at room temperature due to the stabilizing effect of the organic bisphosphonate. Moreover, the surface of the ACP nanoparticles adsorbed with the organic bisphosphate used showed good redispersibility and high colloid stability both in organic and aqueous solutions.  相似文献   

3.
表面修饰In纳米微粒的声化学法制备及结构表征   总被引:3,自引:0,他引:3  
Surface modified indium nanoparticles were prepared by a simple and rapid process from bulk indium via ultrasound dispersion. The morphology and structure of synthesized nanoparticles were characterized by TEM, XRD, XPS and FTIR. The results show that the morphology of indium nanoparticles is spherical and the structure of indium nanoparticles is the tetragonal phase. The surface of indium nanoparticles was coated by 2 ethyl hexanoic acid, which could almost hold back oxidation of the indium nanoparticles. In addition, the tribological property of indium nanoparticles as additives in oil was evaluated on a four-ball tester and the results show that indium nanoparticles exhibit good performance in wear.  相似文献   

4.
CAS nanoparticles were assembled on the smooth surface of a piece of silver by using 1,4-benzenedithiol as coupling molecules. The SEM and resonance Raman spectroscopic characterizations demonstrate that the nanosized structure of CdS was still preserved upon assembly, and a two-dimensional structure of CdS nanoparticles was formed on the substrate surface. The FT-Raman spectra indicate that 1,4-benzenedithiol was coupled between CAS nanoparticles and the silver surface with a tilted orientation. The Raman scattering of 1,4-benzenedithiol was substantially enhanced by the assembled CdS nanoparticles, probably due to the alteration of the polarizability of 1,4-benzenedithiol and the electromagnetic interaction between the dipoles of the CdS particle with its image in the metal substrate.  相似文献   

5.
The organic nanoparticles of a blue-light-emitting molecule, 1,3-diphenyl-5-(9-anthryl)-2-pyrazuline, were prepared by reprecipitation method using acetonitrile as the solvent for the molecular precursor. Three morphologies, spherical, doughnut-shaped and cubic, could be observed on the silicon substrate forthe nanoparfides by the volume-controlled addition of acetonitrile. The evolution of particle morphology as a function of acetonitrile addition was attributed to the variation of the growth habits of the particles in the different environment. The nanoparticles exhibit the novel photoluminescence spectra as compared to those of monomer and the bulk crystals.  相似文献   

6.
Hollow microblocks of [Zn(anic)_2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid(Hanic) and zinc(Ⅱ) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC_(12)H_(10)N_4O_4, was determined by Fourier transform infrared(FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 °C for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N_2 adsorption-desorption analysis showed that the obtained ZnO microbricks possess a mesoporous structure with a surface area of 8.13 m~2/g and a pore size of 22.6 nm. The X-ray diffraction pattern of the final product proved the formation of a pure ZnO composition with a hexagonal structure. Moreover, FTIR analyses showed that the 2-aminonicotinic acid ligand peaks were absent after the calcination step. Diffuse reflectance spectroscopy was used to determine the band gap energy of the produced ZnO and it was about 3.19 eV. To investigate the photocatalytic activity of the porous ZnO nanostructure, a series of photocatalytic tests were carried out to remove Congo red, as a representative toxic azo dye, from aqueous solution. The results show that the product can be used as an efficient photocatalyst for waste water treatment with high degradation efficiency.  相似文献   

7.
A simple spectrophotometric assay of H2O2 and glucose using Ag nanoparticles has been carried out. Relying on the synergistic effect of H2O2 reduction and ultraviolet (UV) irradiation, Ag nanoparticles with enhanced absorption signals were synthesized. H2O2 served as a reducing agent in the Ag nanoparticles formation in which Ag+ was reduced to Ago by O2- generated via the decomposition of H2O2 in alkaline media. On the other hand, photoreduction of Ag+ to Ago under UV irradiations also contributed to the nanoparticles formation. The synthesized nanoparticles were characterized by TEM, XPS, and XRD. The proposed method could determine H2O2 with concentrations ranging from 5.0× 10^-7 to 6.0× 10^-5 tool/ L The detection limit was estimated to be 2.0 × 10^-7 mol/L. Since the conversion of glucose to gluconic acid catalyzed by glucose oxidase was companied with the formation of H2O2, the sensing protocol has been successfully utilized for the determination of glucose in human blood samples. The results were in good agreement with those determined by a local hospital. This colorimetric sensor thus holds great promises in clinical applications.  相似文献   

8.
This work reports a feasible synthesis of highly-dispersed Pt and Pt-Fe nanoparticles supported on multiwall carbon nanotubes (MWCNTs) without Fe and multiwall carbon nanotubes with iron (MWCNTs-Fe) which applied as electrocatalysts for methanol electrooxidation. A Pt coordination complex salt was synthesized in an aqueous solution and it was used as precursor to prepare Pt/MWCNTs, Pt/MWCNTs-Fe, and Pt-Fe/MWCNTs using FeC12.4H20 as iron source which were named S 1, S2 and S3, respectively. The coordination complex of platinum (TOA)2PtC16 was obtained by the chemical reaction between (NH4)2PtC16 with tetraoctylammonium bromide (TOAB) and it was characterized by FT-IR and TGA. The materials were characterized by Raman spectroscopy, SEM, EDS, XRD, TEM and TGA. The electrocatalytic activity of Pt-based supported on MWCNTs in the methanol oxidation was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Pt-Fe/MWCNTs electrocatalysts showed the highest electrocatalytic activity and stability among the tested electrocatalysts due to that the addition of "Fe" promotes the OH species adsorption on the electrocatalyst surface at low potentials, thus, enhancing the activity toward the methanol oxidation reaction (MOR).  相似文献   

9.
李莉 《高分子科学》2014,32(6):778-785
Spherical polyelectrolyte brushes (SPBs) with PS core and poly(acrylic acid) (PAA) brushes were prepared and analyzed by SAXS in this article. A radial electron density profile of SPB was brought up, which fits well with the SAXS result and shows a core-shell structure. The effect of pH on SPB form was represented by SAXS and it proves that the chains of SPB will stretch in response to increased pH owning to the increased electrostatic repulsion. SPBs immobilized with magnetic nanoparticles or bovine serum albumin (BSA) were prepared and analyzed by SAXS as well. SAXS could characterize the changes of electron density inside brushes of SPBs due to the immobilization of magnetic nanoparticles or BSA. This provides significant supports for further application of immobilized metal nanoparticles or proteins.  相似文献   

10.
Europium ions were chemically bound to CdS nanoparticles surface by diethylenetri-aminepentaacetate (DTPA, 1) in a two-step synthetic route. First 1 was applied to chelate with cadmium on the surface of cadmium-rich CdS nanoparticles and act as a capping agent. Further, the purified 1-capped particles were used to bind with Eu~3 . The purified and redispersed particles were characterized by photoluminescence spectroscopy, TEM and SEM. It was observed that Eu~3 on the nanoparticle surface significantly increased the band gap emission and decreased the surface emission intensity of the CdS nanoparticles.  相似文献   

11.
In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders’ antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.  相似文献   

12.
Weakly ionised gaseous plasma created in a moist tetrafluoromethane gas at a low pressure with an electrodeless radiofrequency discharge was applied to modify the surface properties of cellulose fibres. The plasma was used to increase the adsorption of zinc oxide (ZnO) nanoparticles such that cellulose fibres with good ultraviolet (UV) protective properties could be created. The UV protection factor (UPF) values of the ZnO-functionalised fibres were determined as a function of the plasma treatment time. The chemical and physical surface properties of the plasma-treated fibres were examined using scanning electron microscopy, X-ray photoelectron spectroscopy, and wettability tests. The quantity of zinc on the fibres was determined using inductively coupled plasma mass spectroscopy. The results indicated that 30 s of plasma treatment resulted in ZnO-functionalised samples with lower UPF values than samples without plasma treatment due to the creation of fluorine-rich functional groups on cellulose fibres and the agglomeration of ZnO nanoparticles. The highest UPF values (50+) were obtained when samples were treated with plasma for 10 s. These high UPF values were a result of the increased adsorption of uniformly distributed ZnO nanoparticles caused by fibres surface functionalization and roughening upon plasma treatment. Furthermore, the mechanical properties of textiles treated with moist CF4 plasma for 10 s were slightly improved.  相似文献   

13.
The sol–gel method of synthesis of the hybrid nanocomposite films of ZnO/(2‐hydroxypropyl) cellulose (HPC) on silica glass is presented. The sol phases were prepared for different weight ratios of zinc acetate dihydrate to HPC in the presence of triethylamine (TEA). Raman spectrum of the mixture of ZnAc and HPC indicates coordinating interaction between zinc ion and HPC. The generation of ZnO nanoparticles in the HPC matrix proceeds in situ through the annealing of the gel phase at a temperature of 160°C. Identification of ZnO nanoparticles in the HPC matrix is done by using photoluminescence (PL), UV–Vis, and Raman spectroscopy. The films of ZnO/HPC nanocomposite are transparent in the visible light and show a higher energy value of absorption edge compared with ZnO in the bulk. Nanocrystalline films of ZnO were obtained by the calcination of ZnO/HPC nanocomposite at 500°C. ZnO films possess a good transparency for the visible light and high absorbance for UV light. Nanocrystallite sizes of ZnO particles were estimated from the X‐ ray lines broadening. The properties of ZnO layers were studied by the evaluation of PL, X‐ray investigation and atom force microscope (AFM) scanning, and the optical absorption edge. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Regenerated bacterial cellulose (RBC) composites with zinc-oxide nanoparticles (ZnO) were prepared using a new strategy for enhanced biomedical applications of BC. Powdered BC was dissolved in N-methylmorpholine-N-oxide, and different concentrations of ZnO nanoparticles were mixed into the BC solution. RBC, RBC-ZnO1 (1 % ZnO) and ZnO-RBC2 (2 % ZnO) nanocomposite films were prepared by casting the solutions through an applicator. FE-SEM images confirmed the structural features and impregnation of the RBC films by nanoparticles. XRD analysis indicated the presence of specific peaks for RBC and ZnO in the composites. The RBC nanocomposites were found to have greatly enhanced thermal, mechanical and biological properties. Specifically, the degradation temperatures were improved from 334 °C for RBC to 339 and 344 °C for RBC-ZnO1 and RBC-ZnO2, respectively. The mechanical strength and Young’s modulus of the composites were also higher than those of pure RBC. The greatly improved antibacterial properties of the RBC-ZnO nanocomposites are the most striking feature of the present study. The bacterial growth inhibition measured for the RBC was zero, but reached up to 34 and 41 mm for RBC-ZnO1 and RBC-ZnO2, respectively. In addition to their antibacterial properties, the RBC-ZnO nanocomposites were found to be nontoxic and biocompatible with impressive cell adhesion capabilities. These RBC-ZnO nanocomposites can be used for different biomedical applications and have the potential for use in bioelectroanalysis.  相似文献   

15.
Cellulose-ZnO composite was achieved by microwave assisted dissolution of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) followed by addition of premixed ground of Zn(CH3COO)2·2H2O and NaOH. Surface characterization, optical property and thermal stability of nanocomposite were determined by X-ray diffraction, scanning electron microscopy (SEM), UV–Vis spectroscopy and thermo gravimetric analysis. XRD patterns showed the ZnO in polymer matrix has the wurtzite structure. Presence of zinc oxide nanoparticles and cellulose fibers in the composites were observed by SEM. Band-edge transition of zinc oxide in the nanocomposite occurs in lower wavelength than bulk zinc oxide. Thermal stability of nanocomposite was lower than regenerated cellulose due to catalyst behavior of zinc oxide nanoparticles in cellulose matrix.  相似文献   

16.
Nanocrystalline zinc oxide particles were synthesized and simultaneously incorporated into a three-dimensional nanofibrous matrix of bacterial cellulose (BC) pellicles by a newly created method called “ultrasonic-assisted in situ synthesis”. The BC pellicles were first immersed in a zinc acetate solution. Then the Zn2+-absorbed BC pellicle was further immersed in ammonium hydroxide solution with simultaneous ultrasonic treatment. The effect of immersion time of the BC pellicles in zinc acetate solution and ultrasonic treatment time on crystalline size and percent incorporation of ZnO into the BC pellicles were determined. The crystalline size of ZnO incorporated in BC pellicles was in the range of ~54–63 nm that were similar to the diameter of BC nanofibrils. The amount of ZnO into the BC pellicles was found to increase with increasing immersion time. A longer ultrasonic treatment time resulted in smaller crystalline size of the incorporated ZnO. The particle size, morphology and dispersion of the synthesized ZnO in the BC matrix were examined by transmission electron microscope and scanning electron microscope with inbuilt energy dispersive X-ray analysis. The mechanism of the formation of the nanocrystalline ZnO particles onto the BC nanofibrils was discussed. Moreover, the antibacterial activity of the nanocrystalline ZnO particle-incorporated BC sheet against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) was also evaluated.  相似文献   

17.
Undoped zinc oxide nanoparticles and Mn (5 atomic % & 10 atomic %) doped zinc oxide nanoparticles were prepared by soft chemical method. Antibacterial, antioxidant and anticancer activities in breast cancer cell line MDAMB231 of prepared nanoparticles were investigated. The nanoparticles were characterized using XRD, SEM, EDAX, UV–Vis, FT-IR, and room temperature PL Analysis. Antimicrobial activity was tested against both gram positive and gram negative human pathogens. The antioxidant potential of prepared nanoparticles was estimated using Phosphomolybdate and DPPH assay. The MTT assay was used for cytotoxicity evaluation of prepared nanoparticles against breast cancer cell line MDAMB231. XRD patterns confirmed the nanoparticles were crystallized hexagonal wurtzite structure with an average size of 38.95 ?nm. The absorption wavelength was observed at 361 ?nm in UV–Vis spectrum of Mn (10 atomic %) doped ZnO nanoparticles. The Mn (5 atomic %) doped ZnO nanoparticles exhibited significant antibacterial activity against the gram negative bacteria Escherichia coli, Klebsiella pneumonia at all concentrations. Undoped zinc oxide nanoparticles and Mn doped zinc oxide nanoparticles were effective against the breast cancer cell line MDAMB231.  相似文献   

18.
In this study, dual doped Zinc oxide nanoparticles consisted of silver and magnesium were prepared by Salvadora persica extract. Powder X-ray diffraction (PXRD) analysis displayed the formation of wurtzite ZnO phase nanostructures and dual doped nanoparticles. The morphological observations of scanning electron microscopy (SEM) confirmed the hexagonal morphology of prepared nanoparticles. The Raman scattering of this product exhibited the first and second orders of polar and non-polar modes that are the characteristic bonds of a wurtzite structure. The toxicity effects of synthesized un-doped, as well as Ag and Mg dual doped ZnO NPs on breast cancer cell (MDA-MB-231) and breast normal cell (MCF-10A) lines, were investigated by the means of MTT test. Accordingly, in comparison to the case of silver and magnesium doped zinc oxide nanoparticles, the un-doped ZnO NPs caused a more toxic impact on MDA-MB-231cells. There was a lack of any significant toxicity effects from un-doped and Ag and Mg dual doped ZnO nanoparticles on the experimented normal cell line (MCF-10A). The gathered results were indicative of a lower toxicity effect in doped nanoparticles when compared to un-doped nanoparticles and therefore, it can be stated that the doping of silver and magnesium metals produces more reliable zinc oxide nanoparticles.  相似文献   

19.
The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.  相似文献   

20.
Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs synthesis using Rubus fairholmianus root extract (RE) as an efficient reducing agent. The UV spectrum of RE-ZnO NPs exhibited a peak at 357 nm due to intrinsic bandgap absorption and an XRD pattern that matches the ZnO crystal structure (JCPDS card no: 36-1451). The average particle size calculated from the Debye–Scherrer equation is 11.34 nm. SEM analysis showed that the RE-ZnO NPs spherical in shape with clusters (1–100 nm). The antibacterial activity of the NPs was tested against Staphylococcus aureus using agar well diffusion, minimum inhibitory concentration, and bacterial growth assay. The R. fairholmianus phytochemicals facilitate the synthesis of stable ZnO NPs and showed antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号