首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Electrodeposited natural uranium films prepared by electrodeposition from solution of uranyl nitrate UO2(NO3)2·6H2O on stainless steel discs in electrodeposition cell. Solutions of NaHSO4, and Na2SO4 and electric current from 0.50 up to 0.75 A were used in this study. Recalculated weights and surface’s weights of 238U from the alpha activities and secondary ion mass spectrometry (SIMS) intensities resulted in a linear regression. A dependency between of 238U surface’s weights recalculated from alpha activities and signal intensity of 238U in SIMS was investigated in order to determine a potential of SIMS in quantitative analysis of surface samples containing uranium. In the SIMS spectra of electrodeposited uranium films we found that upper layer consist not only from isotopes of uranium (ions 234U+, 235U+, and 238U+). In the positive polarity SIMS spectra, various molecules ions of uranium were suggested as UH+, UH2 +, UO+, UOH+, UO2 +, UO2H+, UO2H2 +, as well as possibly ions UNO+ and UNOH+.  相似文献   

2.
 Compositional characterization of metal-DLC (metal-containing diamond-like carbon) hard coatings is carried out by (WDS)-EPMA and MCs+-SIMS. EPMA enables accurate (± 5% relative) quantitative analysis including minor concentrations (0.1–10 at%) of N, O and Ar. Under conditions of “near-surface” EPMA (E0 < 10 keV) the influence of surface oxide films on “pure” metal standards may be a limiting factor in respect of accuracy. Depth profiling of sufficiently “thick” layered structures (film thickness ≥ 2 μm) is carried out by EPMA-line scans along mechanically prepared bevels. The depth resolution is about 0.2 μm. SIMS in the MCs+-mode enables high resolution (< 20 nm) depth profiling of metal-DLC layered structures including the determination of H (1–20 at%). MCs+-SIMS, i.e. employing Cs+ primary ions and monitoring MCs+ molecular secondary ions (M is the element of interest) is presented as a promising route towards sufficiently accurate (10–20%) SIMS-quantification. Matrix-independent relative sensitivity factors for MCs+-SIMS are derived from homogeneous coating materials defined by EPMA. EPMA proves to be also useful to detect problems related to SIMS of Ar in metal-DLC materials. The combination EPMA-SIMS is demonstrated as an effective analytical strategy for quality control in industrial production and to support the development of metal DLC layered structures with optimum tribological properties.  相似文献   

3.
The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n(18O)/n(16O) measurements methods. Traditionally, n(18O)/n(16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO+), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n(18O)/n(16O) ratio in nuclear forensics science, the samples were solid, pure UO2 or U3O8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n(18O)/n(16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n(18O)/n(16O) ratio of UO2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.  相似文献   

4.
SiO2/ZrO2/C carbon ceramic material with composition (in wt%) SiO2 = 50, ZrO2 = 20, and C = 30 was prepared by the sol–gel-processing method. A high-resolution transmission electron microscopy image showed that ZrO2 and the graphite particles are well dispersed inside the matrix. The electrical conductivity obtained for the pressed disks of the material was 18 S cm−1, indicating that C particles are also well interconnected inside the solid. An electrode modified with flavin adenine dinucleotide (FAD) prepared by immersing the solid SiO2/ZrO2/C, molded as a pressed disk, inside a FAD solution (1.0 × 10−3 mol L−1) was used to investigate the electrocatalytic reduction of bromate and iodate. The reduction of both ions occurred at a peak potential of −0.41 V vs. the saturated calomel reference electrode. The linear response range (lrr) and detection limit (dl) were: BrO3 , lrr = 4.98 × 10−5–1.23 × 10−3 mol L−1 and dl = 2.33 μmol L−1; IO3 , lrr = 4.98 × 10−5 up to 2.42 × 10−3 and dl = 1.46 μmol L−1 for iodate.  相似文献   

5.
In the present work the uranyl hexacyanoferrate (K2UO2[Fe(CN)6]) is deposited on the palladized aluminum (Pd-Al) electrode from a \textUO22 + + \textFe( \textCN )6 - 3 {\text{UO}}_{2}^{2 + } + {\text{Fe}}\left( {\text{CN}} \right)_{6}^{ - 3} solution. Then the anodic stripping chronopotentiometry (ASCP) was used to strip the K2UO2[Fe(CN)6] from the Pd-Al surface. The operational conditions including: pH, K3Fe(CN)6 concentration, deposition potential, deposition time and stripping current were optimized. The ASCP calibration graph was linear in concentration range 10–460 μM. of \textUO22 + {\text{UO}}_{2}^{2 + } and the detection limit was 8.5 μM. The interference of some concomitant ions during the deposition process of K2UO2[Fe(CN)6] was studied. The proposed method was successfully applied for analysis of some uranium mineral ores.  相似文献   

6.
 Methodologies based on secondary ion mass spectrometry (SIMS) for isotopic measurements in nuclear forensic applications relevant to the age determination of Pu particles and isotopic composition of oxygen for geolocation assignment are described. For the age determination of Pu particles, a relative sensitivity factor (RSF) to correct for the different ionisation efficiencies of U and Pu, was obtained by analysing standard Pu materials with known ages. An RSF of 2.41±0.05 was obtained for PuO2 from measurements on samples with different Pu/U ratios. In a sample of known origin, using this RSF value, the age calculated from the 238Pu/234U and 240Pu/236U ratios agreed well with the reported age of 2.3 years. For geolocation assignment, a new approach based on the measurement of differences in the natural abundance of 18O and 16O isotopes and their ratio was developed. The instrumental mass discrimination of the 18O/16O ratio was determined using three O-isotope samples of different chemical composition. The measured precision (the standard error of 100 cycles/analysis) obtained for the oxygen isotopic measurement on the samples was typically ±1.1‰.  相似文献   

7.
A supramolecular tungstoarsenate(V) containing UO2 2+ cations has been isolated by reaction of the ammonium salt of lacunary sandwich-type anion [As2W18(UO2)2O68]14− in aqueous solution of CeIV (pH 3.5). The product prepared as NH4 + salt, (NH4)18[(NH4)12(UO2(H2O))6(UO22-H2O)6(α-AsW9O34)6]·74H2O (I), have been characterized by single crystal X-ray diffraction, elemental analysis, IR, and UV/vis spectroscopy. The anion consists on six lacunary α-AsW9O34 9− anions linked by twelve UO2 2+ cations which resembles a star (six-member). The single crystal structure of I reveals two types uranium atoms; six uranium atoms in the central of anion form two U3O3 trigonal bridging groups in which each uranium atom bounds to three oxygen atoms of one AsW9 and two bridging water ligands. The other uranium atoms form two equatorial bonds to one AsW9 and two equatorial bonds to two other AsW9 fragments. The UV/vis spectroscopy confirms the strong coordination of oxygen atoms of α-AsW9O34 9− anions to uranyl cations in the equatorial plane.  相似文献   

8.
The dissolution of UO2 particles in 4 mol·L−1 nitric acid medium at temperatures of 90–110°C by microwave heating and conventional heating has been investigated, respectively. It is found that the dissolution ratios of UO2 particles by microwave heating were 10%–40% higher than that by conventional heating. Kinetics research shows that the dissolution of UO2 particles in 4 mol·L−1 nitric acid is controlled by the diffusion control model for microwave heating and by the surface reaction control model for conventional heating. The diffusion control model for the dissolution of UO2 particles by microwave heating could be explained by the diffuseness on the surface of UO2 particles.  相似文献   

9.
Single-stage polymerization recently proposed for producing micron-sized polymer particles in aqueous media by Gu, Inukai and Konno (2002) was carried out under the control of agitation with styrene monomer, an amphoteric initiator, 2,2′-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate and a pH buffer NH3/NH4Cl at a monomer concentration of 1.1 kmol/m3 H2O, an initiator concentration of 10 mol/m3 H2O and a buffer concentration of [NH3] = [NH4Cl] = 10 mol/m3 H2O. In the polymerizations, impeller speed was ranged from 300 to 500 rpm to satisfy complete dispersion of the monomer phase and not to introduce the gas phase from the free surface. Polymerization experiments under steady agitation indicated that impeller speed was an important factor for size distribution of polymer particles. An increase in impeller speed promoted particle coagulation during the polymerization to enlarge the average size of polymer particles but widen the size distribution. To produce polymer particles with narrow size distribution, stepwise reduction in impeller speed was examined in the polymerization experiments. It was demonstrated that this method was more effective than the steady agitation. The impeller speed reduction could produce highly monodisperse particles with an average size of 2 μm and a coefficient of variation of size distributions of 2.2% that was much smaller than typical monodispersity criterion of 10%.  相似文献   

10.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

11.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

12.
 We use a multiple-analytical approach based on secondary-ion mass-spectrometry (SIMS), X-ray single-crystal structure refinement (SREF) and electron-probe micro-analysis (EPMA) to derive the complete crystal-chemical formula of a B-rich kornerupine-group mineral, prismatine, from Hrarigahy, Madagascar: (Ca0.01Li0.02Mg0.20Fe2+ 0.10) (Mg3.57Fe2+ 0.06 Al5.37) (Si3.84B0.91Al0.26)O21 (OH1.08F0.07). SIMS matrix effects related to crystal structure were investigated by analyzing two grains with a known crystallographic orientation relative to the ion beam. Boron orders at the T3 site. The refined site-scattering for T3, 6.33 eps (electrons per site) agrees well with the mean bond-length for this site (1.512 ?), which indicates nearly complete occupancy by B (85% rel.). B2O3 (∼ 4 wt%), derived by SREF, agrees with the SIMS data within analytical uncertainty using Si as the inner reference for the matrix. The occupancy of the X site obtained by combining the SIMS and EPMA data (5.30 eps; electrons per site) agrees with the refined site-scattering value (5.75 eps). Trace quantities of Li and Ca are ordered at this site. SIMS data for H2O is in accord with the stoichiometric value, indicating complete occupancy at O10 by OH. Fluorine (∼ 0.17 wt%) orders at O10: it corresponds to ∼ 0.07 atoms per formula unit (apfu) vs. 0.15 apfu (atoms per formula unit) by SREF, indicating a slight overestimation of F with SREF, as previously observed in fluoborite. Our data show that SIMS chemical matrix effects are well-calibrated, and emphasize the usefulness of independent micro-analytical techniques in testing the mutual accuracy and consistency of experimental data.  相似文献   

13.
Determination of the isotopic composition and concentration of uranium, plutonium and neodymium by mass-spectrometric isotope dilution is described. Isotopes233U,242Pu and150Nd were used as spikes. Isotopic composition was measured with a Varian-TH 5 mass spectrometer. Optimum amounts loaded onto the filament were 2–5 μg U, ∼0.1 μg Pu and <0.1 μg Nd. The accuracy and reproducibility of the isotopic ratio and concentration measurements were evaluated.  相似文献   

14.
The non-destructive determination of lithium was performed by using a Cerenkov counter for the detection of the 13 MeV (max) β-particles from the 0.84 sec8Li produced by the reaction7Li(n,γ)8Li. Under optimal conditions for a favorable signal-to-noise ratio, a count rate of about 35 cps/μg lithium at the beginning of the measurement was obtained, with a background of 4.5 cps and a working range of 3–400 μg lithium. The interference of other elements was studied. Several lithium-containing minerals and a sample of Dead Sea water were analyzed. The isotopic composition of lithium in aqueous solutions was determined by the simultaneous measurement of the neutrons produced by the reactions6Li(n,α)t and18O(t,α)17N, and the β-particles emitted by8Li.  相似文献   

15.
The formation constants of dioxouranium(VI)-2,2′-oxydiacetic acid (diglycolic acid, ODA) and 3,6,9-trioxaundecanedioic acid (diethylenetrioxydiacetic acid, TODA) complexes were determined in NaCl (0.1≤I≤1.0 mol⋅L−1) and KNO3 (I=0.1 mol⋅L−1) aqueous solutions at T=298.15 K by ISE-[H+] glass electrode potentiometry and visible spectrophotometry. Quite different speciation models were obtained for the systems investigated, namely: ML0, MLOH, ML22−, M2L2(OH), and M2L2(OH)22−, for the dioxouranium(VI)–ODA system, and ML0, MLH+, and MLOH for the dioxouranium(VI)–TODA system (M=UO22+ and L = ODA or TODA), respectively. The dependence on ionic strength of the protonation constants of ODA and TODA and of both metal-ligand complexes was investigated using the SIT (Specific Ion Interaction Theory) approach. Formation constants at infinite dilution are [for the generic equilibrium pUO22++q(L2−)+rH+ (UO22+) p (L) q H r (2p−2q+r);β pqr ]: log 10 β 110=6.146, log 10 β 11−1=0.196, log 10 β 120=8.360, log 10 β 22−1=8.966, log 10 β 22−2=3.529, for the dioxouranium(VI)–ODA system and log β 110=3.636, log 10 β 111=6.650, log 10 β 11−1=−1.242 for dioxouranium(VI)–TODA system. The influence of etheric oxygen(s) on the interaction towards the metal ion was discussed, and this effect was quantified by means of a sigmoid Boltzman type equation that allows definition of a quantitative parameter (pL 50) that expresses the sequestering capacity of ODA and TODA towards UO22+; a comparison with other dicarboxylates was made. A visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to better characterize the compounds found by pH-metric refinement.  相似文献   

16.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   

17.
In the presence of carbonate and uranine, the chemiluminescent intensity from the reaction of luminol with hydrogen peroxide was dramatically enhanced in a basic medium. Based on this fact and coupled with the technique of flow-injection analysis, a highly sensitive method was developed for the determination of carbonate with a wide linear range. The method provided the determination of carbonate with a wide linear range of 1.0 × 10−10–5.0 × 10−6 mol L−1 and a low detection limit (S/N = 3) of carbonate of 1.2 × 10−11 mol L−1. The average relative standard deviation for 1.0 × 10−9–9.0 × 10−7 mol L−1 of carbonate was 3.7% (n = 11). Combined with the wet oxidation of potassium persulfate, the method was applied to the simultaneous determination of total inorganic carbon (TIC) and total organic carbon (TOC) in water. The linear ranges for TIC and TOC were 1.2 × 10−6–6.0 × 10−2 mg L−1 and 0.08–30 mg L−1 carbon, respectively. Recoveries of 97.4–106.4% for TIC and 96.0–98.5% for TOC were obtained by adding 5 or 50 mg L−1 of carbon to the water samples. The relative standard deviations (RSDs) were 2.6–4.8% for TIC and 4.6–6.6% for TOC (n = 5). The mechanism of the chemiluminescent reaction was also explored and a reasonable explanation about chemical energy transfer from luminol to uranine was proposed. Figure Chemiluminescence profiles in batch system. 1, Injection of 100 μL of K2CO3 into 1.0 mL luminol-1.0 mL H2O2 solution; 2-3 and 4-5, Injection in sequence of 100 μL of K2CO3 and 100 μL of uranine into 1.0 ml luminol-1.0 mL H2O2 solution; Cluminol = 1.0 × 10−7 mol/L, CH2O2 = 1.0 × 10−5 mol/L, Curanine = 1.0 × 10−5 mol/L, CK2CO3 = 1.0 × 10−7 mol/L except for 4-5 where CK2CO3 = 1.0 × 10−4 mol/L  相似文献   

18.
An electrospray ionization tandem mass spectrometric (ESI-MS-MS) method has been developed for the determination of cyanide (CN) in blood. Five microliters of blood was hemolyzed with 50 μL of water, then 5 μL of 1 M tetramethylammonium hydroxide solution was added to raise the pH of the hemolysate and to liberate CN from methemoglobin. CN was then reacted with NaAuCl4 to produce dicyanogold, Au(CN)2, that was extracted with 75 μL of methyl isobutyl ketone. Ten microliters of the extract was injected directly into an ESI-MS-MS instrument and quantification of CN was performed by selected reaction monitoring of the product ion CN at m/z 26, derived from the precursor ion Au(CN)2 at m/z 249. CN could be measured in the quantification range of 2.60 to 260 μg/L with the limit of detection at 0.56 μg/L in blood. This method was applied to the analysis of clinical samples and the concentrations of CN in the blood were as follows: 7.13 ± 2.41 μg/L for six healthy non-smokers, 3.08 ± 1.12 μg/L for six CO gas victims, 730 ± 867 μg for 21 house fire victims, and 3,030 ± 97 μg/L for a victim who ingested NaCN. The increase of CN in the blood of a victim who ingested NaN3 was confirmed using MS-MS for the first time, and the concentrations of CN in the blood, gastric content and urine were 78.5 ± 5.5, 11.8 ± 0.5, and 11.4 ± 0.8 μg/L, respectively.  相似文献   

19.
In an effort to develop new chelating agents for the decorporation of uranium and other actinides, the interaction of the clinically used 1,2-dimethyl-3-hydroxypyrid-4-one (Deferiprone or L1) with hexavalent uranium was investigated by using UV-VIS spectroscopy and solubility measurements. The complex stoichiometry estimation carried out by the Job plot method indicated that under normal conditions up to pH 8.0 a 1[U(VI)]∶1[L1] complex is formed. The stability constant of the UO2L1+ complex was determined by spectroscopic and solubility experiments and found to be log β11=9.1±0.3. The molar extinction coefficient at pH 7.6 for the complex at 500 nm was estimated to be 650 l·mol−1·cm−1. At ligand concentrations higher than 6·10−4 mol·l−1 the formation of a precipitate was observed. The stoichiometry UO2(L1)2 was identified following FTIR measurements of the red precipitate and UV/VIS spectroscopy after dissolution.  相似文献   

20.
The effects of the concentration of polyoxyethylene octylphenyl ether (OP-10) as a nonionic surfactant and the molecular weight of polymers (polystyrene (PS) and poly(methyl methacrylate) (PMMA)) on the morphology of anisotropic PS/PMMA composite particles were investigated. In the case of polymers with lower molecular weight (M w ≈ 6.0 × 104 g/mol), the PS/PMMA composite particles have dimple, via acorn, to hemispherical shapes along with the increase of the OP-10 concentration. On the other hand, when the polymers have higher molecular weight (M w ≈ 3.3 × 105 g/mol), the morphology of PS/PMMA composite particles changed from dimple, via hemispherical, to snowman-like structure while the concentration of OP-10 was increased. Furthermore, thermodynamic analysis was first simply made by spreading coefficients, and the results indicated that both the concentration of OP-10 aqueous solution and the molecular weight of polymers were very important to the final morphology of anisotropic composite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号