首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The fluorescence decays of several exciplexes with partial charge transfer have been investigated in solvents of various polarity. The measured lifetimes are found to be in reasonable agreement with the activation enthalpy and entropy of exciplex decay obtained earlier from the temperature dependence of the exciplex emission quantum yields. For exciplexes with 9-cyanophenanthrene substantial contribution of the higher local excited state into the exciplex electronic structure is found and borrowed intensity effect enhances the exciplex emission rate constants.  相似文献   

2.
The dependence of the formation enthalpy ()H Ex* and the Gibbs energy (G Ex*) of exciplexes with partial charge transfer on the Gibbs energy of electron transfer G et*, the parameters of the electronic structure of an exciplex (the difference in the energies of the charge transfer (CT) state and a locally excited state (LE) in a vacuum ( H 22 0H 11 0), the matrix element of the electronic coupling of the CT and LE states H 12, the dipole moment of the CT state, and the repulsion energy in an exciplex a"), and the polarity of the medium was analyzed. The consideration of the repulsion energy in the exciplex is necessary for correlation of the experimental values of H Ex* and the spectral shift of the exciplex emission with respect to the LE state. All of these parameters depend on the particular nature of the exciplex, which is the reason for the lack of the general dependence of H Ex* and G Ex* on G et* for exciplexes with partial charge transfer.  相似文献   

3.
4.
Fluorescence quenching of a thioxanthone derivative by methyl- and methoxy-substituted benzenes (MeB and MeOB, respectively) is performed in solvents of different polarity. Emissive exciplexes are observed even in polar solvents and provide kinetic and spectroscopic data over a large scale of solvent polarity. These data were subsequently analyzed by use of a new theoretical model that leads to a thermodynamic relationship between exciplex and electron-transfer driving forces Delta G(exc) and Delta G(et), respectively. The remarkable agreement found between this model and both kinetic and spectroscopic data supports its validity. Moreover, the difference observed between MeB and MeOB compounds in quenching efficiency is analyzed by this model and provides the main parameters governing exciplex features, especially the resonance integral between locally excited and charge-transfer states.  相似文献   

5.
The dependence of exciplex emission spectra on the solvent polarity was studied for exciplexes with the Gibbs free energy of excited-state electron transfer, G * et , exceeding –0.1 eV (for pyrene, fluoranthene, 1,12-benzoperylene, and 9-cyanoanthracene with methoxybenzenes or dimethylnaphthalene). These exciplexes showed stronger changes in the spectral shift of exciplex emission and the extent of charge transfer with increasing solvent polarity than the exciplexes having more negative G * et values. The parameters (difference in energy of charge transfer (CT) and locally excited (LE) states in a vacuum, (H 0 22H 0 11), and the matrix element for electronic coupling of CT and LE states H 12and mrelated to the dipole moment of the CT state and the size of the exciplex) determining the extent of charge transfer, the spectral shift, and other properties of exciplexes were evaluated. The parameters H 12and mfor the exciplexes examined fall in the interval 0.1–0.5 and 1.0–1.7 eV, respectively, and the difference (H 0 22H 0 11) is proportional to G * et .  相似文献   

6.
As recently proposed, the singlet-excited states of several cyanoaromatics react with pyridine via bonded-exciplex formation, a novel concept in photochemical charge transfer reactions. Presented here are electronic and steric effects on the quenching rate constants, which provide valuable support for the model. Additionally, excited-state quenching in poly(vinylpyridine) is strongly inhibited both relative to that in neat pyridine and also to conventional exciplex formation in polymers, consistent with a restrictive orientational requirement for the formation of bonded exciplexes. Examples of competing reactions to form both conventional and bonded exciplexes are presented, which illustrate the delicate balance between these two processes when their reaction energetics are similar. Experimental and computational evidence is provided for the formation of a bonded exciplex in the reaction of the singlet excited state of 2,6,9,10-tetracyanoanthracene (TCA) with an oxygen-substituted donor, dioxane, thus expanding the scope of bonded exciplexes.  相似文献   

7.
Understanding excited‐state dynamics is critical for improving the photoluminescence (PL) efficiency of exciplexes. A series of exciplexes based on conventional hole‐transporting materials as donor and newly developed phenylpyridinato boron derivatives as acceptor were investigated. High PL efficiencies were achieved in only some combinations, and a large difference in performance among combinations provided insight into nonradiative processes in exciplex systems. Furthermore, the triplet local excited states (3LE) of each donor and acceptor were found play an important role in triplet exciplex harvesting. Significant contributions from triplets were clearly observed when the charge‐transfer excited states (1CT and 3CT) and 3LE were ideally aligned. We also demonstrated fine control of relative energy alignment via the concentration to improve the PL efficiency.  相似文献   

8.
9.
Dibenzomethanatoboron difluoride (DBMBF2) interacted with alkylbenzenes from its singlet excited state to form exciplexes ranging from weak polarity up to contact radical ion pairs (CRIP); this exciplex series shows the characteristics in the Marcus "normal" region. In cyclohexane these exciplexes gave intense fluorescence spectra and high quantum yields (phi(infinity)ex). The dipole moment of these exciplexes calculated from the solvatochromic shift of the fluorescence maximums (vmax) was used to estimate the coefficient ("a" and "c") of the CT and LE terms in the exciplex wavefunction. On the basis of the measured lifetimes and phi(infinity)ex of these exciplexes, the radiative (k(ex)f) and nonradiative (k(ex)NR) rate constants were calculated. The former k(ex)f were also computed from a semi-empirical approach based on the assumption that the exciplex wavefunction could be adequately described by CT and LE states, and that *DBMBF2 primarily contributes to the probability of exciplex emission. Two results agree with each other with small systematic deviations for those less polar exciplexes. The plots of k(ex)r and k(ex)NR (or their logarithmic value) against the LE contribution (c2) and transition energy gaps (hvmax) afford better correlation than those against -deltaG(-et). This indicates the role played by the LE contribution in generating the stabilization energy (U(s)) in these exciplexes through the A-D+)<==> *AD) resonance interaction; U(s), in turn, modifies -deltaG(-et) to afford the decay driving force hvmax. Also, those plots from k(ex)f values (being determined directly from experiments) show better correlation than those from k(ex)NR. In contrast to the CRIP type exciplexes in the Marcus "inverted" region, these k(ex)f and k(ex)NR increase in the common trend with increasing transition energy gaps. The k(ex)NR plots show less steep slopes and attains more quickly a minimum toward the CRIP region; the latter is identified as the turning point from the "normal" to "inverted" region. Both the attenuation and reversal of the k(ex)NR value with increasing polarity are believed to be generated by the emerging contribution of the intersystem crossing process as an additional nonradiative process, which is induced by the increased spin-orbit coupling in highly polar exciplexes.  相似文献   

10.
This study addresses magnetic field effects in exciplex forming donor-acceptor systems. For moderately exergonic systems, the exciplex and the locally excited fluorophore emission are found to be magneto-sensitive. A previously introduced model attributing this finding to excited state reversibility is confirmed. Systems characterised by a free energy of charge separation up to approximately -0.35 eV are found to exhibit a magnetic field effect on the fluorophore. A simple three-state model of the exciplex is introduced, which uses the reaction distance and the asymmetric electron transfer reaction coordinate as pertinent variables. Comparing the experimental emission band shapes with those predicted by the model, a semi-quantitative picture of the formation of the magnetic field effect is developed based on energy hypersurfaces. The model can also be applied to estimate the indirect contribution of the exchange interaction, even if the perturbative approach fails. The energetic parameters that are essential for the formation of large magnetic field effects on the exciplex are discussed.  相似文献   

11.
正己烷中对二烷基氨基苯甲酸的分子内电荷转移双重荧光   总被引:1,自引:0,他引:1  
在非极性溶剂正己烷中,观察到了系列对二烷基氨基苯甲酸的双重荧光.皮秒激光诱导时间分辨荧光和溶剂极性效应研究证实:该双重荧光系由于激发态分子内电荷转移过程形成的电荷转移态和局部激发态所发射.超快反应动力学研究表明:在非极性溶剂中,对二烷基氨基苯甲酸分子内电荷转移过程是由较低的反应活化能所致.  相似文献   

12.
The effects of solvent polarity on the fluorescence spectra and fluorescence decays of β-(1-pyrenyl)ethyl p-cyanobenzoate (P2CN) were investigated in detail using binary solvents consisting of various mixing ratios of isooctane-ethyl acetate or ethyl acetate-acetonitrile (dielectric constants ()=1.94–36.2). Whereas both the intensity and wavelength maxima of an intramolecular exciplex emission (EX) are dependent on the solvent polarity, only the intensity of an emission from the locally excited pyrene (LE) is dependent on the solvents used. When monitored at 377 nm, the picosecond SPC (single photon counting) measurements reveal a slow decay (>150 ns) in addition to a fast decay (<1 ns) of the locally excited P2CN. There are also two decays for the EX which vary the intensity ratios by the monitored wavelength. The decay rate constants, kEX1 and kEX2, have a good linear correlation with the dielectric constants of the solvents, indicating that there exist two kinds of exciplexes. It is suggested that the decays of the locally excited-state of P2CN are so fast due to result of the efficient electron transfer that the two kinds of intramolecular exciplexes are formed from the two discrete conformers in the ground state.  相似文献   

13.
The photophysical properties of a prototypic donor–acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso‐phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited‐singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170<P<550 MPa), the molecule undergoes reversible distortion that has a small effect on the yield of π, π* emission but severely quenches exciplex fluorescence. In the limiting case, this high‐pressure effect decreases the molar volume of the solute by approximately 25 cm3 and opens a new channel for nonradiative deactivation of the excited‐state manifold.  相似文献   

14.
Results of our femtosecond-picosecond laser photolysis studies on photoinduced electron transfer phenomena in solutions including exciplex dynamics and its solvent dependences, energy gap dependences of photoinduced charge separation and charge recombination of various geminate ion pairs, mechanisms of chemical reactions via exciplexes and ion pairs, dynamics of photoinduced election transfer in hydrogen bonding complexes, dynamics and mechanisms of photoinduced electron transfer in fixed distance donor acceptor dyads and photosynthetic reaction center models, and mechanisms of electron ejection from solute fluorescent state in polar solutions are summarized and discussed.  相似文献   

15.
Abstract
We report here the resonance Raman studies of photooxidation of free base tetraphenylporphin (H2TPP) in the presence of external electron acceptors such as CCl4 and chloranil under selective laser irradiation. From the dependence of photooxidation on the concentration of electron acceptors, polarity of solvents, excitation lines and temperatures, we have inferred that a weak triplet exciplex formed between the excited H2TPP and electron acceptor in non-polar solvents serves as transient species and the light-induced intermolecular charge transfer from H2TPP to the electron acceptor is the primary process involved in photooxidation. Observation of partial photooxidation in the rigid matrix at low temperatures has been interpreted to be due to long-range quantum mechanical electron tunneling process. Almost complete photooxidation is observed in a soft matrix as the donor and acceptor molecules can attain favorable relative orientation and separation for electron transfer during the excited state lifetime of the exciplex.  相似文献   

16.
Abstract— The 1-butanol concentration dependence of fluorescence emission intensities and spectra from 3-methylindole/1-butanol exciplexes in 1-heptane reveals a 1:1 stoichimetry near the isoemissive point increasing to 1:2 at higher concentrations. The large increase in stability of the 1:1 complex relative to indole itself is attributed to its relatively low dissociation rate with an activation energy of 36.8 kJ/mol. Each step of exciplex formation shifts the emission maximum about 15 nm to the red. The stronger combining site is the negative C-3. The weaker site is the positive N-1. Stabilization due to charge transfer between excited indole and electrophilic or nucleophilic partners is small relative to dipole-dipole interactions. There is no indication of significant orbital-overlap. The detection of both positive and negative centers for exciplex formation on indole, 1-methyl indole and electronically similar derivatives resolves some long-standing problems and extends the basis of knowledge necessary to use tryptophanyl-residue fluorescence as a quantitative probe for protein conformational character and its changes.  相似文献   

17.
Abstract —We report here the resonance Raman studies of photooxidation of free base tetraphenylporphin (H2TPP) in the presence of external electron acceptors such as CCl4 and chloranil under selective laser irradiation. From the dependence of photooxidation on the concentration of electron acceptors, polarity of solvents, excitation lines and temperatures, we have inferred that a weak triplet exciplex formed between the excited H2TPP and electron acceptor in non-polar solvents serves as transient species and the light-induced intermolecular charge transfer from H2TPP to the electron acceptor is the primary process involved in photooxidation. Observation of partial photooxidation in the rigid matrix at low temperatures has been interpreted to be due to long-range quantum mechanical electron tunneling process. Almost complete photooxidation is observed in a soft matrix as the donor and acceptor molecules can attain favorable relative orientation and separation for electron transfer during the excited state lifetime of the exciplex.  相似文献   

18.
Rate constants for radiative decay, radiationless decay, and intersystem crossing are reported for a series of excited states formed by reaction of cyanoanthracene acceptors with alkylbenzenes as donors in several solvents of moderate to low polarity. The excited states have widely varying degrees of charge transfer, from essentially pure electron transfer states to pure locally excited states. The data illustrate the fundamental factors that control the contrasting relative efficiencies of radiative and radiationless processes in electron transfer compared to locally excited states. The radiationless decay rate constants can be described quantitatively as a function of the extent of charge transfer using weighted contributions from a locally excited decay mechanism and a pure electron-transfer type mechanism. The factors that control the rate constants for radiationless decay in excited states with intermediate charge-transfer character are discussed.  相似文献   

19.
The synthesis of five new chiral macrocyclic peptidomimetic naphthalenophanes, together with two open-chain derivatives, is described. The cyclization step is accomplished in good yields without the use of high dilution or template techniques. The new compounds have been photophysically studied by means of steady-state fluorescence spectroscopy. It has been found that the smaller the ring size, the higher the emission quantum yield from the excited charge-transfer state (CTS, exciplex) and the lower the fluorescence from the locally excited state (LES). The occurrence of exciplex fluorescence is noteworthy as the electron-donating groups are secondary amine moieties, which do not normally form emissive exciplexes.  相似文献   

20.
Many molecules in their excited states react with other species having suitable electron donor or acceptor properties to form complexes (exciplexes) stable only in the excited state. This letter reports a study of the modes of decay of a series of exciplexes in which the donor molecule (1,2-benzperylene) formed exciplexes with a series of dimethylaniline derivatives. By measuring the flourescence and intersystem crossing quantum yields, together with the fluorescence lifetimes of the exciplexes, it was possible to derive the rate constants for fluorescence, radationless decay to the ground state, and intersystem crossing. The first two decay processes were found to show a marked sensitivity to the exciplex energy, while the intersystem crossing rate constant was affected only by the presence of heavy atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号