首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Transition metal catalyzed C(sp3)–H functionalization is a rapidly growing field. Despite severe challenges, distal C–H functionalizations of aliphatic molecules by overriding proximal positions have witnessed tremendous progress. While usage of stoichiometric directing groups played a crucial role, reactions with catalytic transient directing groups or methods without any directing groups are gaining more attention due to their practicality. Various innovative strategies, slowly but steadily, circumvented issues related to remote functionalizations of aliphatic molecules. A systematic compilation has been presented here to provide insights into the recent developments and future challenges in the field. The Present perspective is expected to open up a new dimension and provide an avenue for deep insights into the distal C(sp3)–H functionalizations that could be applied routinely in various pharmaceutical and agrochemical industries.

Transition metal catalyzed C(sp3)–H functionalization is a rapidly growing field.  相似文献   

2.
In the past decade, selective C–C and C-heteroatom bond construction through palladium-catalyzed direct C–H bond functionalization has been extensively studied by employing a variety of directing groups. Within this category, direct asymmetric C(sp2)–H and C(sp3)–H activation for the construction of highly enantiomerically enriched skeletons still progressed at a slow pace. This minireview briefly introduces the major advances in the field for palladium-catalyzed direct asymmetric C–H bond functionalization via the directing group strategy.

This minireview introduces Pd-catalyzed direct asymmetric C–H functionalization reactions using a directing group strategy.  相似文献   

3.
Manganaelectro-catalyzed azidation of otherwise inert C(sp3)–H bonds was accomplished using most user-friendly sodium azide as the nitrogen-source. The operationally simple, resource-economic C–H azidation strategy was characterized by mild reaction conditions, no directing group, traceless electrons as the sole redox-reagent, Earth-abundant manganese as the catalyst, high functional-group compatibility and high chemoselectivity, setting the stage for late-stage azidation of bioactive compounds. Detailed mechanistic studies by experiment, spectrophotometry and cyclic voltammetry provided strong support for metal-catalyzed aliphatic radical formation, along with subsequent azidyl radical transfer within a manganese(iii/iv) manifold.

The merger of manganese-catalyzed C–H functionalization with electrosynthesis enabled C(sp3)–H azidation devoid of chemical oxidants or photochemical irradiation. Detailed mechanistic studies are supportive of a manganese(iii/iv) electrocatalysis.  相似文献   

4.
N-Methyliminodiacetic acid (MIDA) boronates are boronic acid derivatives which are stable to reduction, oxidation and transmetalation. This has led to their widespread use as boronic acid protecting groups (PGs) and in iterative cross-couplings. We describe herein the development of a novel MIDA derivative that acts in a dual manner, as a protecting group and a directing group (DG) for meta C(sp2)–H functionalisation of arylboronic acids. Palladium catalysed C–H alkenylations, acetoxylations and arylations are possible, at room temperature and under aerobic conditions. Deprotection to reveal the functionalised boronic acids is rapid and allows for full recovery of the DG. The technique allows the facile diversification of aryl boronic acids and their subsequent use in a range of reactions or in iterative processes.

An N-methyliminodiacetic acid derivative allows the meta-C–H functionalisation of boronic acids, acting simultaneously as a directing and protecting group.  相似文献   

5.
Transition metal-catalysed functionalizations of inert C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C–H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C–H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C–H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C–H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.

Transition metal-catalysed functionalizations of inert C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules.  相似文献   

6.
A dual photochemical/nickel-mediated decarboxylative strategy for the assembly of C(sp3)–C(sp2) linkages is disclosed. Under light irradiation at 390 nm, commercially available and inexpensive Hantzsch ester (HE) functions as a potent organic photoreductant to deliver catalytically active Ni(0) species through single-electron transfer (SET) manifolds. As part of its dual role, the Hantzsch ester effects a decarboxylative-based radical generation through electron donor–acceptor (EDA) complex activation. This homogeneous, net-reductive platform bypasses the need for exogenous photocatalysts, stoichiometric metal reductants, and additives. Under this cross-electrophile paradigm, the coupling of diverse C(sp3)-centered radical architectures (including primary, secondary, stabilized benzylic, α-oxy, and α-amino systems) with (hetero)aryl bromides has been accomplished. The protocol proceeds under mild reaction conditions in the presence of sensitive functional groups and pharmaceutically relevant cores.

This works demonstrates the implementation of an electron donor–acceptor (EDA) complex platform toward Ni-catalyzed C(sp3)–C(sp2) bond formation, circumventing the need for exogenous photocatalysts, additives, and stoichiometric metal reductants.  相似文献   

7.
A palladium-catalyzed C–H activation of acetylated anilines (acetanilides, 1,1-dimethyl-3-phenylurea, 1-phenylpyrrolidin-2-one, and 1-(indolin-1-yl)ethan-1-one) with epoxides using O-coordinating directing groups was accomplished. This C–H alkylation reaction proceeds via formation of a previously unknown 6,4-palladacycle intermediate and provides rapid access to regioselectively functionalized β-hydroxy products. Notably, this catalytic system is applicable for the gram scale mono-functionalization of acetanilide in good yields. The palladium-catalyzed coupling reaction of the ortho-C(sp2) atom of O-coordinating directing groups with a C(sp3) carbon of chiral epoxides offers diverse substrate scope in good to excellent yields. In addition, further transformations of the synthesized compound led to biologically important heterocycles. Density functional theory reveals that the 6,4-palladacycle leveraged in this work is significantly more strained (>10 kcal mol−1) than the literature known 5,4 palladacycles.

The combined experimental and computational study on palladium-catalyzed regioselective C–H functionalization of O-coordinating directing groups with epoxides is described.  相似文献   

8.
Transition metal-catalysed C–H bond functionalisations have been extensively developed in organic and medicinal chemistry. Among these catalytic approaches, the selective activation of C(sp3)–H and C(sp2)–H bonds is particularly appealing for its remarkable synthetic versatility, yet it remains highly challenging. Herein, we demonstrate the first example of temperature-dependent selective C–H functionalisation of unactivated C(sp3)–H or C(sp2)–H bonds at remote positions through palladium catalysis using 7-pyridyl-pyrazolo[1,5-a]pyrimidine as a new directing group. At 120 °C, C(sp3)–H arylation was triggered by the chelation of a rare [6,5]-fused palladacycle, whereas at 140 °C, C(sp2)–H arylation proceeded instead through the formation of a 16-membered tetramer containing four 7-pyridyl-pyrazolo[1,5-a]pyrimidine–palladium chelation units. The subsequent mechanistic study revealed that both C–H activations shared a common 6-membered palladacycle intermediate, which was then directly transformed to either the [6,5]-fused palladacycle for C(sp3)–H activation at 120 °C or the tetramer for C(sp2)–H arylation at 140 °C with catalytic amounts of Pd(OAc)2 and AcOH. Raising the temperature from 120 °C to 140 °C can also convert the [6,5]-fused palladacycle to the tetramer with the above-mentioned catalysts, hence completing the C(sp2)–H arylation ultimately.

Unprecedented 16-membered tetramer or [6,5]-fused palladacycle, mutually shadowboxing-like transformed from the shared common intermediate, accomplishes the Pd-catalysed temperature-dependent selective arylation of C(sp2)–H or C(sp3)–H.  相似文献   

9.
Transition-metal-catalyzed cross-electrophile C(sp2)–(sp3) coupling and C–H alkylation reactions represent two efficient methods for the incorporation of an alkyl group into aromatic rings. Herein, we report a Pd-catalyzed cascade cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides. Methoxy and benzyloxy groups, which are ubiquitous functional groups and common protecting groups, were utilized as crucial mediators via primary or secondary C(sp3)–H activation. The reaction provides an innovative and convenient access for the synthesis of alkylated phenol derivatives, which are widely found in bioactive compounds and organic functional materials.

A cascade Pd-catalyzed cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides has been developed by using an ortho-methoxy or benzyloxy group as a mediator via C(sp3)–H activation.  相似文献   

10.
Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery. Herein, we report a ruthenium-catalyzed meta-C–H deaminative alkylation with easily accessible amino acid-derived Katritzky pyridinium salts. Likewise, remote C–H benzylations were accomplished with high levels of chemoselectivity and remarkable functional group tolerance. The meta-C–H activation approach combined with our deaminative strategy represents a rare example of selectively converting C(sp3)–N bonds into C(sp3)–C(sp2) bonds.

Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery.  相似文献   

11.
Directing group assistance provided a paradigm for controlling site-selectivity in transition metal-catalyzed C–H functionalization reactions. However, the kinetically and thermodynamically favored formation of 5-membered metallacycles has greatly hampered the selective activation of remote C(sp3)–H bonds via larger-membered metallacycles. Recent development to achieve remote C(sp3)–H functionalization via the C–H metallation process largely relies on employing specific substrates without accessible proximal C–H bonds. Encouragingly, recent advances in this field have enabled the selective functionalization of remote aliphatic C–H bonds in the presence of equally accessible proximal ones by taking advantage of the switch of the regiodetermining step, ring strain of metallacycles, multiple non-covalent interactions, and favourable reductive elimination from larger-membered metallacycles. In this review, we summarize these advancements according to the strategies used, hoping to facilitate further efforts to achieve site- and even enantioselective functionalization of remote C(sp3)–H bonds.

Recent advances in site-selective functionalization of remote aliphatic C–H bonds in organometallic pathways are summarized.  相似文献   

12.
A trityl-cation-initiated annulation of benzyl-substituted vinylcyclopropanes (VCPs) with hydrosilanes is reported. Two Si–C(sp3) bonds and one C(sp2)–C(sp3) bond are formed in this process where an intramolecular 6-endo-tet Friedel–Crafts alkylation of a silylium-ion-activated cyclopropane ring is the rate-determining key step. The reaction mechanism is proposed based on computations and is in agreement with experimental observations. The new reaction leads to an unprecedented silicon-containing 6/6/5-fused ring system. A phenethyl-substituted VCP derivative yields another unknown tricycle having 6/6/6 ring fusion by reacting in a related but different way involving a 6-exo-tet ring closure.

Downstream to alkene hydrosilylation, the opening of the cyclopropane ring in benzyl-substituted VCPs is interlinked with an SEAr of the aryl group.  相似文献   

13.
A new catalytic method for the direct alkylation of allylic C(sp3)–H bonds from unactivated alkenes via synergistic organo- and photoredox catalysis is described. The transformation achieves an efficient, redox-neutral synthesis of homoallylamines with broad functional group tolerance, under very mild reaction conditions. Mechanistic investigations indicate that the reaction proceeds through the N-centered radical intermediate which is generated by the allylic radical addition to the imine.

A new catalytic method for the direct alkylation of allylic C(sp3)–H bonds from unactivated alkenes via synergistic organo- and photoredox catalysis is described.  相似文献   

14.
Direct functionalization of C(sp3)–H bonds in a predictable, selective and recyclable manner has become a central challenge in modern organic chemistry. Through incorporating different triarylamine-containing ligands into one coordination polymer, we present herein a heterogeneous approach to the combination of hydrogen atom transfer (HAT) and photoredox catalysis for regioselective C–H arylation of benzylamines. The different molecular sizes and coordination modes of the ligands, tricarboxytriphenylamine (H3TCA) and tris(4-(pyridinyl)phenyl)amine (NPy3), in one coordination polymer consolidate the triarylamine (Ar3N) moiety into a special structural intermediate, which enhances the chemical and thermal stability of the polymers and diminishes structural relaxation during the catalytic process. The inherent redox potentials of Ar3N moieties prohibit the in situ formed Ar3+ to earn an electron from C(sp3)–H nucleophiles, but allow the abstraction of a hydrogen atom from C(sp3)–H nucleophiles, enabling the formation of the C(sp3)˙ radical and the cross-coupling reaction to proceed at the most electron-rich sites with excellent regioselectivity. The new heterogeneous photoredox HAT approach skips several interactions between transient species during the typical synergistic SET/HAT cycles, demonstrating a promising redox-economical and reagent-economical heterogeneous platform that has not been reported for α-amino C–H arylation to form benzylamine derivatives. Control experiments based on monoligand coordination polymers suggested that the mixed-ligand approach improved the photochemical and photophysical properties, providing important insight into rational design and optimization of recyclable photocatalysts for rapid access to complex bioactive molecules and late-stage functionalized pharmaceuticals.

The efficiency of photosensitization and hydrogen atom transfer (HAT) catalysis is balanced in a recyclable heterogeneous manner by the modification of the N-central conformation in Cd-MIX.  相似文献   

15.
DNA-encoded library (DEL) technology has the potential to dramatically expedite hit identification in drug discovery owing to its ability to perform protein affinity selection with millions or billions of molecules in a few experiments. To expand the molecular diversity of DEL, it is critical to develop different types of DNA-encoded transformations that produce billions of molecules with distinct molecular scaffolds. Sequential functionalization of multiple C–H bonds provides a unique avenue for creating diversity and complexity from simple starting materials. However, the use of water as solvent, the presence of DNA, and the extremely low concentration of DNA-encoded coupling partners (0.001 M) have hampered the development of DNA-encoded C(sp3)–H activation reactions. Herein, we report the realization of palladium-catalyzed C(sp3)–H arylation of aliphatic carboxylic acids, amides and ketones with DNA-encoded aryl iodides in water. Notably, the present method enables the use of alternative sets of monofunctional building blocks, providing a linchpin to facilitate further setup for DELs. Furthermore, the C–H arylation chemistry enabled the on-DNA synthesis of structurally-diverse scaffolds containing enriched C(sp3) character, chiral centers, cyclopropane, cyclobutane, and heterocycles.

DNA-compatible C(sp3)–H activation reactions of aliphatic carboxylic acids, amides, and ketones were developed for efficient access to DEL synthesis.  相似文献   

16.
While strategies involving a 2e transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.

Organophotoredox mediated HAT catalysis is developed for achieving high anomerically selective thioglycosylation of glycosyl bromides.  相似文献   

17.
A dual catalytic decarboxylative allylation and benzylation method for the construction of new C(sp3)–C(sp3) bonds between readily available carboxylic acids and functionally diverse carbonate electrophiles has been developed. The new process is mild, operationally simple, and has greatly improved upon the efficiency and generality of previous methodology. In addition, new insights into the reaction mechanism have been realized and provide further understanding of the harnessed reactivity.

A dual catalytic decarboxylative allylation and benzylation method for the construction of new C(sp3)–C(sp3) bonds between readily available carboxylic acids and functionally diverse carbonate electrophiles has been developed.  相似文献   

18.
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)–H functionalisations of high potential value towards advancing fragment hits by ‘growing’ functionalised rings and chains from unconventional, carbon-centred vectors.

This Perspective reviews recently developed methods that are likely to be of value to the elaboration of sp3-rich fragments from carbon-centred vectors, whilst maintaining key fragment-to-target binding interactions.  相似文献   

19.
Visible light driven nitrene transfer and insertion reactions of organic azides are an attractive strategy for the design of C–N bond formation reactions under mild reaction conditions, the challenge being lack of selectivity as a free nitrene reactive intermediate is usually involved. Herein is described an iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with selectivity by using organic azides as the nitrogen source under blue LED light (469 nm) irradiation. The photochemical reactions display chemo- and regio-selectivity and are effective for the late-stage functionalization of natural and bioactive compounds with complexity. Mechanistic studies revealed that iron porphyrin plays a dual role as a photosensitizer and as a catalyst giving rise to a reactive iron–nitrene intermediate for subsequent C–N bond formation.

An iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with broad substrate scope under mild conditions is conducted, with selectivity through the use of organic azides as the nitrogen source under blue LED light irradiation.  相似文献   

20.
As an alternative approach to traditional C–H activation that often involved harsh conditions, and vicinal or primary C–H functionalization, radical relay offers a solution to these long-held problems. Enabled by 1,n (n = 5, 6)-hydrogen atom transfer (HAT), we use a most prevalent moiety, alkene, as the precursor to an sp3 C-centered radical to promote selective cleavage of inert C(sp3)–H bonds for the generation of azidotrifluoromethylated molecules. Mild conditions, broad scope and excellent regioselective control (>20 : 1) are observed in the reactions. Deuterium labelling studies disclose the kinetic characteristics of the transformations and verify a direct 1,n-HAT pathway. The key to this C-centered radical relay is that iron plays a dual role as a radical initiator and terminator to incorporate the azide functionality through radical oxidation via azido–ligand-transfer. The methods and the later derivatization promise expeditious synthesis of CF3-containing organic azides, γ-lactam and triazoles that are widely used in designing new fluorescent tags and functional materials.

Remote functionalization of inert C(sp3)–H bonds is described via iron-catalyzed sp3 C-centered radical relay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号