首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New chemically modified oligonucleotides at the site of the backbone are needed to improve the properties of oligonucleotides. A practical synthesis for a triazole‐linked nucleoside dimer based on a PNA‐like structure has been developed. This involves synthesizing two uracil‐based monomers that contain either an azide or an alkyne functionality, followed by copper‐catalyzed 1,3‐dipolar cycloaddition. This dimer was incorporated within an oligonucleotide via phosphoramidite chemistry and UV‐monitored thermal denaturation data illustrates slight destabilization relative to its target complementary sequence. This chemically modified dimer will allow for a future investigation of its properties within DNA and RNA‐based applications. J. Heterocyclic Chem., (2011).  相似文献   

2.
A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid).  相似文献   

3.
X-ray absorption spectroscopy (XAS) at the sulfur ( approximately 2470 eV) and chlorine ( approximately 2822 eV) K-edges has been applied to a series of 4Fe-4S model complexes. These are compared to 2Fe-2S model complexes to obtain insight into the localized ground state in the mixed-valence dimer versus the delocalized ground state in the mixed-valence tetramer. The preedges of hypothetical delocalized mixed-valence dimers [Fe(2)S(2)](+) are estimated using trends from experimental data and density functional calculations, for comparison to the delocalized mixed-valence tetramer [Fe(4)S(4)](2+). The differences between these two mixed-valence sites are due to the change of the sulfide-bridging mode from micro(2) to micro(3). The terminal chloride and thiolate ligands are used as spectator ligands for the electron density of the iron center. From the intensity of the preedge, the covalency of the terminal ligands is found to increase in the tetramer as compared to the dimer. This is associated with a higher effective nuclear charge on the iron in the tetramer (derived from the energies of the preedge). The micro(3)-bridging sulfide in the tetramer has a reduced covalency per bond (39%) as compared to the micro(2)-bridging sulfide in the dimer (51%). A simple perturbation model is used to derive a quadratic dependence of the superexchange coupling constant J on the covalency of the metal ions with the bridging ligands. This relationship is used to estimate the superexchange contribution in the tetramer (J = -156 cm(-)(1)) as compared to the mixed-valence dimer (J = -360 cm(-)(1)). These results, combined with estimates for the double exchange and the vibronic coupling contributions of the dimer sub-site of the tetramer, lead to a delocalized S(t) = (9)/(2) spin ground state for the mixed-valence dimer in the tetramer. Thus, the decrease in the covalency, hence the superexchange pathway associated with changing the bridging mode of the sulfides from micro(2) to micro(3) on going from the dimer to the tetramer, significantly contributes to the delocalization of the excess electron over the dimer sub-site in the tetramer.  相似文献   

4.
To determine the origin of the UV-specific CC to TT tandem mutation at the CC site, we made a duplex DNA decamer containing a uracil cis-syn cyclobutane dimer (CBD) as the deaminated model of a cytosine dimer. Two-dimensional 1H-NMR spectroscopy studies were performed on this sequence where two adenines (Ade) were opposite to the uracil dimer. Two imino protons of the uracil dimer were found to retain Watson-Crick hydrogen bonding with the opposite Ade, although the 5'-U(NH) of the dimer site showed unusual upfield shift like that of the 5'-T(NH) of the TT dimer, which seemed to be associated with deshielding by the flanking base rather than with reduced hydrogen bonding. (McAteer et al. 1998, J. Mol. Biol. 282:1013-1032). Hydrogen bondings at the dimer site were also supported by detecting typical strong nuclear Overhauser effects (NOE) between two imino protons and the opposite Ade H2 or NH2. But sequential NOE interactions of base protons with sugar protons were absent at the two flanking nucleotides of the 5' side of the uracil dimer and at the intradimer site, contrasting with its thymine analog where sequential NOE was absent only at the A4-T5 step. In addition, NOE cross peak for U5(NH) <--> A4(H2) was detected, although the NOE interactions of U6(NH) with A7(H2) and A17(H2) were not observed in contrast to the thymine dimer duplex. This different local structural alteration may be affected by the induced right-hand twisted puckering mode of cis-syn cyclobutane ring of the uracil dimer in the B-DNA duplex, even though the isolated uracil dimer had left-hand twisted puckering rigidly. In parallel, these observations may be correlated with observed differences in mutagenic properties between cis-syn UU dimer and cis-syn TT dimer.  相似文献   

5.
Through-hydrogen bond spin-spin coupling has been investigated computationally in the formamide dimer and in fragments of the protein ubiquitin. The Fermi-contact term was calculated by finite perturbation theory with the B3LYP DFT method with several basis sets. The distance and angular dependence of the 3J(N,C') coupling constant (N-H--O=C) in the hydrogen-bonded formamide dimer was firstly examined for a wide range of mutual arrangements, also in relation to the stability of the dimer. The magnitude of 3J(N,C') is relatively insensitive to the dihedral angle between the two amide planes, whereas values between 1-2 Hz are calculated for a variety of arrangements, including non-linear hydrogen bonds, in agreement with the shape of some occupied, low-lying molecular orbitals which connect donor and acceptor. Then, fragments of the ubiquitin protein (for which such coupling constants are experimentally available) were generated by removing from the experimental structure all amino acids except those involved in hydrogen bonding, and coupling constants were calculated for such fragments. Although calculated 3J(N,C') values are sometimes overestimated, they generally correlate with the corresponding experimental values.  相似文献   

6.
All bound rovibrational levels of the H(2)O-H(2) dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H(2)O and H(2) as well as to inversion symmetry. Dimers containing oH(2) are more strongly bound than dimers with pH(2), as expected, with dissociation energies D(0) of 33.57, 36.63, 53.60, and 59.04 cm(-1)for pH(2)O-pH(2), oH(2)O-pH(2), pH(2)O-oH(2), and oH(2)O-oH(2), respectively, on the potential of Valiron et al. that corresponds to a binding energy D(e) of 235.14 cm(-1). Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.  相似文献   

7.
We present a rigorous calculation of the contribution of water dimers to the absorption coefficient alpha(nu,T) in the millimeter and far infrared domains, over a wide range (276-310 K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C. Leforestier et al., J. Chem. Phys. 117, 8710 (2002)], and which was recently further validated by the good agreement obtained for the calculated equilibrium constant Kp(T) with experimental data [Y. Scribano et al., J. Phys. Chem. A. 110, 5411 (2006)]. Transition dipole matrix elements were computed between all rovibrational states up to an excitation energy of 750 cm(-1), and J=K=5 rotational quantum numbers. It was shown by explicit calculations that these matrix elements could be extrapolated to much higher J values (J=30). Transitions to vibrational states located higher in energy were obtained from interpolation of computed matrix elements between a set of initial states spanning the 0-750 cm(-1) range and all vibrational states up to the dissociation limit (approximately 1200 cm(-1)). We compare our calculations with available experimental measurements of the water continuum absorption in the considered range. It appears that water dimers account for an important fraction of the observed continuum absorption in the millimeter region (0-10 cm(-1)). As frequency increases, their relative contribution decreases, becoming small (approximately 3%) at the highest frequency considered nu=944 cm(-1).  相似文献   

8.
The aggregation of insulin is complicated by the coexistence of various multimers, especially in the presence of Zn(2+). Most investigations of insulin multimerization tend to overlook aggregation kinetics, while studies of insulin aggregation generally pay little attention to multimerization. A clear understanding of the starting multimer state of insulin is necessary for the elucidation of its aggregation mechanism. In this work, the native-state aggregation of insulin as either the Zn-insulin hexamer or the Zn-free dimer was studied by turbidimetry and dynamic light scattering, at low ionic strength and pH near pI. The two states were achieved by varying the Zn(2+) content of insulin at low concentrations, in accordance with size-exclusion chromatography results and literature findings (Tantipolphan, R.; Romeijn, S.; Engelsman, J. d.; Torosantucci, R.; Rasmussen, T.; Jiskoot, W. J. Pharm. Biomed. 2010, 52, 195). The much greater aggregation rate and limiting turbidity (τ(∞)) for the Zn-insulin hexamer relative to the Zn-free dimer was explained by their different aggregation mechanisms. Sequential first-order kinetic regimes and the concentration dependence of τ(∞) for the Zn-insulin hexamer indicate a nucleation and growth mechanism, as proposed by Wang and Kurganov (Wang, K.; Kurganov, B. I. Biophys. Chem. 2003, 106, 97). The pure second-order process for the Zn-free dimer suggests isodesmic aggregation, consistent with the literature. The aggregation behavior at an intermediate Zn(2+) concentration appears to be the sum of the two processes.  相似文献   

9.
The quasiclassical absorption spectrum of the water dimer in the A band was calculated taking into account motion in all degrees of freedom of the system. The ab initio excited state potentials employed were interpolated by the modified Shepard interpolation method using QMRCI energies and state-averaged MCSCF gradients and Hessians. The ground state vibrational wavefunction was variationally calculated using an adiabatic separation between the high and low frequency normal modes of the system. The calculated spectrum of water dimer shows a clear blueshift with respect to the monomer, but also a small red tail, in agreement with the prediction by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. Previous three-dimensional model studies of the photodissociation of the water dimer by Valenzano et al. [J. Chem. Phys. 123, 034303 (2005)] did not show this red tail. A thorough analysis of the dependence of the spectrum on the modes coupled explicitly in the calculation of the spectrum shows that the red tail is due to coupling between the intramolecular stretch vibrations on different monomers.  相似文献   

10.
Abstract— Studies on the synthesis, preliminary in vivo biological activity, singlet oxygen and fluorescence yields of a di-meric porphyrin (Dl) are described. The pharmacokinetic behavior and photodynamic properties of the dimer Dl were examined in Balb/c mice bearing an MS-2 fibrosarcoma. Compound Dl shows a high selectivity for tumor localization (tumor/peritumoral tissue ratios of dye concentration ranging between ca 100 and 140 at 24 h after drug administration of 5.0-1.0 mg kg-1 into DL-AL-dipalmitoylphosphatidylcholine liposomes). The photo-therapeutic efficiency of dimer Dl was evaluated by following the growth curves of fibrosarcoma irradiated with red light (600-700 nm) with a total dose of 400 J cm-2, at 24 h after intravenous injection. Photodynamic therapy-treated tumors showed a significant delay in growth as compared to untreated control mice. The results obtained suggest that the porphyrin dimer Dl may be a promising candidate for further use in PDT experiments.  相似文献   

11.
Mn(hfac)(2) complexes of [2-(5-pyrimidinyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H- imidazoline-1-oxyl 3-oxide] (1) and its 2-(3-pyridyl) analogue (2) were prepared. Both complexes formed similar dimer structures. However, their packing patterns were considerably different. The pyrimidine dimers were aligned to form a linear chain structure, and each dimer was weakly bound by two sets of O6-C2 short contacts. In the pyridine dimer complex, two structurally similar but independent dimers were alternatively arranged, and two dimer-dimer contacts, O6-C2 (3.13 A) and O6-C3 (3.30 A), were observed. The pyrimidine complex showed strong antiferromagnetic behavior in the high temperature region (150-300 K) and weak ferromagnetic behavior below 100 K. Two models were used to analyze these magnetic properties. One is a quintet-septet thermal equilibrium model with mean-field approximation, which can reproduce the round minimum observed at about 150 K in chi(p)T plots (J(1)/k(B) = -148 +/- 2 K with theta = +2.5 +/- 0.1 K). The other is a ferromagnetic S = 2 chain model to fit the chi(p)T values in the lower temperature region (J(S=2)/k(B) = +0.31 +/- 0.01 K). The pyridine complex showed antiferromagnetic interactions both in the high and low temperature regions. The magnetic behavior was similarly analyzed with the following parameters: J(1)/k(B) = -140 +/- 2 K with theta = -0.55 +/- 0.05 K, and J(S=2)/k(B) = -0.075 +/- 0.003 K. The ligand-ligand interactions for both of the complexes were theoretically analyzed. The calculated results agreed well with the experiments. The stronger antiferromagnetic behavior observed in both the complexes at high temperatures was attributed to the magnetic interaction between the Mn(II) and the coordinating nitroxide oxygen atom. The weaker ferromagnetic interaction, J(S=2)/k(B) = +0.31 +/- 0.01 K, in the pyrimidine complex was attributed to the coulombic O6-C2 contact. Antiferromagnetic interaction J(S=2)/k(B) = -0.075 +/- 0.003 K in the pyridine complex was attributed to the O6-C3 contact.  相似文献   

12.
This study discussed the phenomena on thermal polymerization of α-methylstyrene (AMS). A curve scanned by temperature-programmed technique was performed by differential scanning calorimetry (DSC). Heat of polymerization (ΔH) and onset temperature of exothermic (T0) behavior were determined to be 280±10 J g-1 and about 138±1°C, respectively. A dimer formation mechanism was proposed for initiation of the propagating chain. Spectroscopic identification of dimer structure was conducted by infrared (IR) spectroscopy in the wavenumber from 650 to 1100 cm-1associated with molecular fingerprint characteristics. The mechanism of thermal polymerization on α-methylstyrene proposed in this study was similar to that of styrene suggested by Mayo.  相似文献   

13.
In a series of earlier articles [B. Poirier J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam J. Chem. Phys. 121, 1690 (2004); B. Poirier and A. Salam J. Chem. Phys. 121, 1740 (2004)], a new method was introduced for performing exact quantum dynamics calculations in a manner that formally defeats exponential scaling with system dimensionality. The method combines an optimally localized, orthogonal Weyl-Heisenberg wavelet basis set with a simple phase space truncation scheme, and has already been applied to model systems up to 17 degrees of freedom (DOF's). In this paper, the approach is applied for the first time to a real molecular system (neon dimer), necessitating the development of an efficient numerical scheme for representing arbitrary potential energy functions in the wavelet representation. All bound rovibrational energy levels of neon dimer are computed, using both one DOF radial coordinate calculations and a three DOF Cartesian coordinate calculation. Even at such low dimensionalities, the approach is found to be competitive with another state-of-the-art method applied to the same system [J. Montgomery and B. Poirier J. Chem. Phys. 119, 6609 (2003)].  相似文献   

14.
By using calculations rooted in the time dependent density functional theory (TD-DFT) we have investigated how the lowest energy excited states of a face-to-face pi-stacked cytosine dimer vary with the intermonomer distance (R). The perfomances of different density functionals have been compared, focussing mainly on the lowest energy single excited state of the dimer (S(1))(2). TD-PBE0, TD-LC-omegaPBE, and TD-M05-2X provide a picture very similar to that obtained at the CASPT2 level by Merchan et al. (J Chem Phys 2006, 125, 231102), predicting that (S(1))(2) has a minimum for R approximately 3 A, with a binding energy of approximately 0.5 eV, whereas TD-B3LYP, TD-CAM-B3LYP, and TD-PBE understimate the binding energy. However, independently of the functional employed, no low-energy spurious charge transfer transitions are predicted by TD-DFT calculations, also when a nonsymmetric dimer is investigated, providing encouraging indications for the use of TD-DFT for studying the excited state of pi-stacked nucleobases.  相似文献   

15.
Proton collisions with the water dimer are studied using a nonadiabatic, direct, time‐dependent approach called electron nuclear dynamics (END). Fragmentation of the water dimer in collisions with protons at energies of 5.0, 1.0 keV and 200 eV is the primary aim of this initial study of water clusters using END. We report on the initial fragmentation dynamic, that is, for times less than 200 fs. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
Four kinds of 1:1 and 1:3 salts of 3-[4-(trimethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation ([1](+)) and its mono- and dimethyl derivatives ([2](+) and [3](+)) with Ni(dmit)(2) anions (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([1](+)[Ni(dmit)(2)](-) (4), [2](+)[Ni(dmit)(2)](-) (5), [3](+)[Ni(dmit)(2)](-) (6), and [1](+)[Ni(dmit)(2)](3)(-) (7)) have been prepared, and the magnetic susceptibilities (chi(M)) have been measured between 1.8 and 300 K. The chi(M) values of salts 5 and 7 can be well reproduced by the sum of the contributions from (i). a Curie-Weiss system with a Curie constant of 0.376 (K emu)/mol and negative Weiss constants (THETAV;) of -0.4 and -1.7 K and (ii). a dimer system with strong negative exchange interactions of 2J/k(B) = -354 and -258 K, respectively. The dimer formations in Ni(dmit)(2) anions have been ascertained by the crystal structure analyses of salts 4-6. In salts 4 and 6, Ni(dmit)(2) dimer molecules are sandwiched between two verdazyl cations, indicating the formation of a linear tetramer in 4 and 6. The magnetic susceptibility data for salts 4 and 6 have been fitted to a linear tetramer model using an end exchange interaction of 2J(1)/k(B) = -600 K and a central interaction of 2J(2)/k(B) = -280 K for 4 and 2J(1)/k(B) = -30 K and 2J(2)/k(B) = -580 K for 6, respectively. The results of the temperature dependence of the g(T) value in salts 4-6 obtained by ESR measurement also support the above analyses. The 1:1 salts 4-6 are insulators. On the other hand, the conductivity of the 1:3 salt 7 at 20 degrees C was sigma = 0.10 S cm(-)(1) with an activation energy E(A) = 0.099 eV, showing the semiconductor property. Salt 7 is a new molecular paramagnetic semiconductor.  相似文献   

17.
Approximate density functional theory has been used to investigate changes in the geometry and electronic structure of the mixed oxo- and carboxylato-bridged dimers [Mn(2)(mu-O)(2)(O(2)CH)(NH(3))(6)](n+)and [Mn(2)(mu-O)(O(2)CH)(2)(NH(3))(6)](n+)in the Mn(IV)Mn(IV), Mn(III)Mn(IV), and Mn(III)Mn(III) oxidation states. The magnetic coupling in the dimer is profoundly affected by changes in both the bridging ligands and Mn oxidation state. In particular, change in the bridging structure has a dramatic effect on the nature of the Jahn-Teller distortion observed for the Mn(III) centers in the III/III and III/IV dimers. The principal magnetic interactions in [Mn(2)(mu-O)(2)(O(2)CH)(NH(3))(6)](n+)() involve the J(xz/xz)and J(yz/yz) pathways but due to the tilt of the Mn(2)O(2) core, they are less efficient than in the planar di-mu-oxo structure and, consequently, the calculated exchange coupling constants are generally smaller. In both the III/III and III/IV dimers, the Mn(III) centers are high-spin, and the Jahn-Teller effect gives rise to axially elongated Mn(III) geometries with the distortion axis along the Mn-O(c) bonds. In the III/IV dimer, the tilt of the Mn(2)O(2) core enhances the crossed exchange J(x)()()2(-)(y)()()2(/)(z)()()2 pathway relative to the planar di-mu-oxo counterpart, leading to significant delocalization of the odd electron. Since this delocalization pathway partially converts the Mn(IV) ion into low-spin Mn(III), the magnetic exchange in the ground state can be considered to arise from two interacting spin ladders, one is the result of coupling between Mn(IV) (S = 3/2) and high-spin Mn(III) (S = 2), the other is the result of coupling between Mn(IV) (S = 3/2) and low-spin Mn(III) (S = 1). In [Mn(2)(mu-O)(O(2)CH)(2)(NH(3))(6)](n+)(), both the III/III dimer and the lowest energy structure for the III/IV dimer involve high-spin Mn(III), but the Jahn-Teller axis is now orientated along the Mn-oxo bond, giving rise to axially compressed Mn(III) geometries with long Mn-O(c) equatorial bonds. In the IV/IV dimer, the ferromagnetic crossed exchange J(yz)()(/)(z)()()2 pathway partially cancels J(yz/yz) and, as a consequence, the antiferromagnetic J(xz/xz) pathway dominates the magnetic coupling. In the III/III dimer, the J(yz/yz) pathway is minimized due to the smaller Mn-O-Mn angle, and since the ferromagnetic J(yz)()(/)(z)()()2 pathway largely negates J(xz/xz), relatively weak overall antiferromagnetic coupling results. In the III/IV dimer, the structures involving high-spin and low-spin Mn(III) are almost degenerate. In the high-spin case, the odd electron is localized on the Mn(III) center, and the resulting antiferromagnetic coupling is similar to that found for the IV/IV dimer. In the alternative low-spin structure, the odd electron is significantly delocalized due to the crossed J(yz)()(/)(z)()()2 pathway, and cancellation between ferromagnetic and antiferromagnetic pathways leads to overall weak magnetic coupling. The delocalization partially converts the Mn(IV) ion into high-spin Mn(III), and consequently, the spin ladders arising from coupling of Mn(IV) (S = 3/2) with high-spin (S = 2) and low-spin (S = 1) Mn(III) are configurationally mixed. Thus, in principle, the ground-state magnetic coupling in the mixed-valence dimer will involve contributions from three spin-ladders, two associated with the delocalized low-spin structure and the third arising from the localized high-spin structure.  相似文献   

18.
Rapid and efficient separation of all three types of cyclobutyl pyrimidine dimer (Pyr mean value of Pyr) species induced in cellular DNA by far-ultraviolet (UV) light (chiefly 254 nm) has been achieved by reversed-phase high-performance liquid chromatography using octadecylsilyl stationary phases. The order of elution is: (Ura mean value of Ura) less than (Ura mean value of Thy) less than (Thy mean value of Thy) less than Thy. The determination of Pyr mean value of Pyr species in DNA from UV-irradiated, [3H]thymidine-labelled human skin fibroblasts in tissue culture is demonstrated for far-UV fluences as low as 10 J/m2. The ability to measure specifically individual dimer types allowed demonstration of comparable kinetics of repair for two labelled dimer species (Ura mean value of Thy and Thy mean value of Thy).  相似文献   

19.
The long-range correction (LC) scheme of density-functional theory (DFT) was applied to the calculation of the pi-aromatic interaction of the benzene dimer and naphthalene dimer. In previous calculations, it was confirmed that the LC scheme [Iikura et al., J. Chem. Phys. 115, 3540 (2001)] gives very accurate potential- energy surfaces (PESs) of small van der Waals (vdW) complexes by combining with the Anderson-Langreth-Lundqvist (ALL) vdW correlation functional [Andersson et al., Phys. Rev. Lett. 76, 102 (1996)] (LC-DFT + ALL). In this study, LC-DFT+ALL method was examined by calculating a wide range of PES of the benzene dimer including parallel, T-shaped, and parallel-displaced configurations. As a result, we succeeded in reproducing very accurate PES within the energy deviance of less than 1 kcalmol in comparison with the results of high-level ab initio molecular-orbital methods at all reference points on the PES. It was also found that LC-DFT + ALL gave accurate results independent of exchange-correlation functional used, in contrast with the strong functional dependencies of conventional pure functionals. This indicates that both exchange repulsion and van der Waals attractive interactions should be correctly incorporated in conventional pure functionals in order to calculate accurate pi-aromatic interactions. We also found that LC-DFT + ALL method has a low basis-set dependency in the calculations of pi-aromatic interactions. The present scheme was also successfully applied to the pi,[ellipsis (horizontal)],pi stacking interactions of naphthalene dimer. This may suggest that LC-DFT + ALL method would be a powerful tool in the calculations of large molecules such as biomolecules.  相似文献   

20.
Polyamide composed of furan dimer, which is prepared from biomass‐derived organic molecule 2‐furfural, is synthesized. The reaction of 2,2′‐furan dimer 5,5′‐dicarbonyl chloride with several 1,ω‐diamines was carried out with a solution or interfacial polycondensation leading to the corresponding polyamide. Measurement of the melting point was performed resulting to exhibit a higher temperature compared with the related polyamide bearing a single furan ring composed of furan‐2,5‐dicarboxylic acid (FDCA). Thermal analyses (TG–DTA) also indicated higher temperatures of decomposition than those of FDCA‐derived polyamide. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1516–1519  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号