首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
F+Cl2->ClF+Cl和Cl′F+Cl->Cl′+ClF的反应机理   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)B3LYP方法,取6 311G基组,计算研究了F+Cl2ClF+Cl的反应机理.求得1个线形和2个三角形过渡态,反应能垒分别为1.24、46.37和105.09kJ•mol-1;同时发现F以∠FClCl为10~20°(或 120~160°)进攻Cl2时,反应无能垒.此外,求得对称反应Cl′F+ClCl′+ClF的能垒为40.57 kJ•mol-1的1个过渡态.  相似文献   

2.
以铜试剂(NaEt2dtc•3H2O)和邻菲咯啉(o-phen•H2O) 与水合氯化铽(TbCl3•3.75H2O)在无水乙醇中制得了三元固态配合物.化学分析和元素分析确定其组成为Tb(Et2dtc)3(phen).IR光谱研究表明配合物中Tb3+与NaEt2dtc中的硫原子双齿配位,同时与phen的氮原子双齿配位.用Calvet微热量计测定了298.15 K下液相生成反应的焓变ΔrHmθ(l),为(-21.819±0.055) kJ•mol-1,通过热化学循环计算了固相生成反应焓变ΔrHmθ(s),为(128.476±0.675) kJ•mol-1.改变反应温度,研究了液相生成反应的热动力学.用精密转动弹热量计测得配合物的恒容燃烧能ΔcU为(-17646.95±8.64) kJ•mol-1,经计算其标准燃烧焓ΔcHHmθ和标准生成焓ΔfHmθ分别为(-17666.16±8.64) kJ•mol-1和(-1084.04±9.49) kJ•mol-1.  相似文献   

3.
H+CH2CO反应机理的G2计算   总被引:2,自引:0,他引:2  
分别在UQCISD/6-311G(d,p)和G2理论计算水平上,对CH2CO和H反应可能存在的四条反应通道进行了研究,详细分析了每个通道的反应机理;通过振动分析的虚频数和内禀反应坐标(IRC)计算,确认了反应涉及的每一个过渡态.通过反应位能剖面的比较,发现经过一个中间体生成CH3+CO的一条途径是主反应通道,该通道是个放热反应,总焓变为-146.07 kJ•mol-1,速控步骤的位垒为55.09 kJ•mol-1.理论计算结果较好地解释了实验观察到的主要产物和副产物并存的现象。  相似文献   

4.
辛景凡  王文亮  王渭娜  张越  吕剑 《化学学报》2009,67(17):1987-1994
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

5.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

6.
合成了两种稀土高氯酸盐与L 脯氨酸配合物的晶体.经热重、差热、化学分析及对比有关文献,知其组成是[Pr2(L Pro)6(H2O)4](ClO4)6和[Er2(L Pro)6(H2O)4](ClO4)6,质量分数为99.24%和98.20%.选用RE(NO3)3•6H2O(RE=Pr,Er)、L Pro、NaClO4•H2O和NaNO3作辅助物,使用具有恒温环境的反应热量计,以2 mol•L-1 HCl作溶剂,分别测定了[2RE(NO3)3•6H2O+6L Pro+6NaClO4•H2O]和{[RE2(L PrO)6(H2O)4](ClO4)6+6NaNO3}在298.15 K时的溶解热.设计一热化学循环求得化学反应的反应焓ΔrHm分别是:63.904 kJ•mol-1和91.017 kJ•mol-1,经计算得配合物[RE2(L Pro)6(H2O)4](ClO4)6(s)在298.15 K时的标准生成焓ΔfHm(298.15 K)分别是-6 594.78 kJ•mol-1和-6 532.87 kJ•mol-1.  相似文献   

7.
2-羟基吡啶质子转移过程的理论研究   总被引:8,自引:0,他引:8  
采用量子化学中的密度泛函理论,在B3LYP/6-31G(d)基组水平上,计算并考察了2-羟基吡啶分子醇式结构和酮式结构进行结构互变的质子转移过程中的4种可能途径:(a)分子内质子转移,(b)水助催化质子转移,(c)同种二聚体双质子转移和(d)异种二聚体间双质子转移.计算结果表明,途经c所需要的活化能最小(2.6 kJ•mol-1,逆反应则为27.1 kJ•mol-1),而过程a所需要的活化能最大(137.2 kJ•mol-1),途径b和d的活化能居中间(分别为38.7和17.3 kJ•mol-1).研究还表明,氢键在降低反应活化能方面起着重要的作用.  相似文献   

8.
采用RHF/AM1方法研究了H2O2与N2O的反应机理.计算结果表明,该反应是多步反应,先后通过2个过渡态(TS1,TS3),1个内旋转位垒(TS2),2个中间体(IM1,IM2).其中从反应物Re到TS1为整个反应的决速步骤,速控步骤的活化能为323.04 kJ•mol-1.整个反应为一放热反应,放出的热量为147.67kJ•mol-1.  相似文献   

9.
以L-苏糖酸钙与草酸的复分解反应得到的L-苏糖酸溶液,在80 ℃下与过量MgO反应较长时间, 滤液浓缩后加无水乙醇制得L-苏糖酸镁白色粉末.用化学分析及元素分析确定其组成为Mg(C4H7O5)2•H2O. IR光谱分析表明,化合物中苏糖酸以羧基氧原子与Mg2+配位,Mg2+为sp3杂化态,配位数为4. TD-DTG结果说明,它在热分解中有一定稳定性,而经脱水和生成Mg(OAc)2,最后生成MgO.用转动弹热量计测得其恒容燃烧能ΔE为 (-10407.34±4.67) kJ•mol-1,计算其标准燃烧焓ΔcHm和标准生成焓ΔfHm分别为(-3 249.49±1.46) kJ•mol-1和(-2 786.23±1.84) kJ•mol-1.  相似文献   

10.
用密度泛函(DFT)方法,在B3LYP/6-31G**水平上对2-溴丙酸气相消除反应机理进行了研究.计算表明,反应主要是通过半极化五元环结构过渡态进行的,羧基上的氢原子协助溴原子离去,羧基氧原子帮助稳定过渡态.在B3LYP/6-311++G(3df,3pd)水平上对B3LYP/6-31G**优化的几何构型进行了单点能计算,计算所得反应的速度控制步骤的活化能为189.461 kJ•mol-1,偏离实验值((180.3±3.4) kJ•mol-1)5.08%.  相似文献   

11.
1 INTRODUCTION Interhalogen compounds have played an impor- tant role in environment and chemical engineering production. During the course of ozone exhaustion induced by sunlight in polar region, Br2, BrCl and HOBr are all precursors of Br atom[1]. Lately, scien- tists have detected that the content of BrCl in polar region sunlight was 35 ppt, larger than that of Br2 (25 ppt). Previous studies suggested that the con- centration of BrCl and O3 exhibits obvious negative correlation: w…  相似文献   

12.
根据氯离子型层状复合氢氧化物(LDH-Cl)制备过程中溶液浓度变化的监测结果和不同反应进程时产物的EDS、IR、XRD、TEM、TG-DTA表征结果,研究了合成LDH-Cl的共沉淀反应动力学特征及机理.实验结果表明, LDH-Cl的生成符合多核层表面反应动力学模型;反应过程中LDH的晶胞参数c从2.421 nm变为2.399 nm,通道高度h由0.3321 nm减小为0.3228 nm,粒子直径Da由6.40 nm增大为15.16 nm, Dc由7.43 nm增大到10.93 nm,纵横比由0.86增大为1.39; IR和TG-DTA特征变化表明了层板对阴离子作用的强度和层板的结构稳定性随反应进程而提高.  相似文献   

13.
CH3NO2和CH3自由基吸氢反应途径和变分速率常数计算   总被引:1,自引:0,他引:1  
采用MP2(full)/6-311G(d, p)从头算方法,优化了硝基甲烷和甲基自由基吸氢反应的过渡态结构,经QCISD(T)方法进行能量校正,得出该反应的正逆向反应的活化位垒分别是58.21 kJ•mol-1和67.17 kJ•mol-1.沿IRC分析指出该反应是氢转移协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在反应坐标S的-0.9~1.0(amu)1/2bohr之间;在温度为800~2600 K范围内,运用改进的变分过渡态理论(ICVT),计算了该反应的速率常数,并与实验类比所得的速率常数随温度的变化趋势进行了比较.  相似文献   

14.
The mechanism of reaction CI2+2HBr=2HCI+Br2 has been carefully investigated with density functional theory (DFT) at B3LYP/6-311G** level. A series of three-centred and four-centred transition states have been obtained. The activation energy (138.96 and 147.24 kJ/mol, respectively) of two bimolecular elementary reactions CI2+HBr→HCI+BrCI and BrCI+HBr→HCI+Br2 is smaller than the dissociation energy of CI2, HBr and BrCI, indicating that it is favorable for the title reaction occurring in the bimolecular form. The reaction has been applied to the chemical engineering process of recycling Br2 from HBr. Gaseous CI2 directly reacts with HBr gas, which produces gaseous mixtures containing Br2, and liquid Br2 and HCI are obtained by cooling the mixtures and further separated by absorption with CCI4. The recovery percentage of Br2 is more than 96%, and the CI2 remaining in liquid Br2 is less than 3.0%. The paper provides a good example of solving the difficult problem in chemical engineering with basic theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号