首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The reactivity of complex [Ru(eta(6)-p-cymene)(kappa(3)P,N,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) towards a variety of mono- and bidentate neutral ligands has been studied, allowing the high-yield synthesis of the novel half-sandwich Ru(ii) derivatives [Ru(eta(6)-p-cymene)(L)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (L = N[triple bond, length as m-dash]CMe , N[triple bond, length as m-dash]CEt , PMe(3), PMe(2)Ph , PMePh(2), PPh(3), P(OMe)(3), P(OEt)(3), P(OPh)(3), py , kappa(1)P-dppm , kappa(1)P-dppe ), as well as the octahedral species [Ru(Ninsertion markN)(2)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (Ninsertion markN = bipy , phen ). Deprotonation of complexes ,, upon treatment with an excess of NaOH in CH(2)Cl(2), generates the monocationic derivatives [Ru(Ninsertion markN)(2)(kappa(2)P,N-Ph(2)PC(H)[double bond, length as m-dash]P{NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][Cl] (Ninsertion markN = bipy , phen ) in which the methanide anion adopts an unprecedented kappa(2)P,N bidentate coordination mode. The structures of compounds , and have been determined by single-crystal X-ray diffraction methods.  相似文献   

2.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

3.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

4.
The reaction of the C=N bond in PhCH=NPh with the carbanionic species Ph2PCH2-, leading to the N-phenyl beta-aminophosphine Ph2PCH2CH(Ph)NHPh, L1, is described. This molecule reacts with different organic electrophiles to afford related compounds Ph2PCH2CH(Ph)NPhX (X = SiMe3, L2; COPh, L4), [Ph2MePCH2CH(Ph)NHPh]+(I-), L3, and [Ph2PCH2CH(Ph)N(Ph)CO]2, L5, containing two amido and two phosphino functions. The coordination properties of L1, L2, and L4 have been studied in palladium chemistry. The X-ray structure of [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] shows the bidentate coordination mode for the L1 ligand with equatorial C(Ph)-N(Ph) phenyl groups. [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] crystallizes at 298 K in the space group P2(1)/n with cell parameters a = 10.689(2) A, b = 21.345(3) A, c = 12.282(2) A, beta = 90.294(12) degrees, Z = 4, D(calcd) = 1.526. The reaction between 2 equiv of L1 and [PdCl(eta3-C3H5)]2 affords the [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] complex in which an unexpected N-H.Cl intramolecular interaction has been observed by an X-ray diffraction analysis. [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] crystallizes at 298 K in the monoclinic space group Cc with cell parameters a = 10.912(1) A, b = 17.194(2) A, c = 14.169(2) A, beta = 100.651(9) degrees, Z = 4, D(calcd) = 1.435. Neutral and cationic alkyl or allyl palladium chloride complexes containing L1 are also reported as well as a neutral allyl palladium chloride complex containing L4. Variable-temperature 31P[1H] NMR studies on the allyl complexes show that the eta3/eta1 allyl interconversion is enhanced by a positive charge and also by a N-H.Cl intramolecular interaction.  相似文献   

5.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

6.
Reactions of [(eta5-C5H5)Ru(PR'3)2(Cl)] with NaBAr(F) [BAr(F)-=B{3,5-[C6H3(CF3)2]}4-; PR'3=PEt3 or 1/2Et2PCH2CH2PEt2) (depe)] and PR2H (R=Ph, a; tBu, b; Cy, c) in C6H5F, or of related cationic Ru(N2) complexes with PR2H in C6H5F, gave the secondary phosphine complexes [(eta5-C5H5)Ru(PR'3)2(PR2H)]+ BAr(F)- (PR'3=PEt3, 3 a-c; 1/2depe, 4 a,b) in 65-91 % yields. Additions of tBuOK (3 a, 4 a; [D6]acetone) or NaN(SiMe3)2 (3 b,c, 4 b; [D8]THF) gave the title complexes [(eta5-C5H5)Ru(PEt3)2(PR2)] (5 a-c) and [(eta5-C5H5)Ru(depe)(PR2)] (6 a,b) in high spectroscopic yields. These complexes were rapidly oxidized in air; with 5 a, [(eta5-C5H5)Ru(PEt3)2{P(=O)Ph2}] was isolated (>99 %). The reaction of 5 a and elemental selenium yielded [(eta5-C5H5)Ru(PEt3)2{P(=Se)Ph2}] (70 %); selenides from 5 c and 6 a were characterized in situ. Competitive deprotonation reactions showed that 5 a is more basic than the rhenium analog [(eta5-C5H5)Re(NO)(PPh3)(PPh2)], and that 6 b is more basic than PtBu3 and P(iPrNCH2CH2)3N. The latter is one of the most basic trivalent phosphorus compounds [pK(a)(acetonitrile) 33.6]. Complexes 5 a-c and 6 b are effective ligands for Pd(OAc)2-catalyzed Suzuki coupling reactions: 6 b gave a catalyst nearly as active as the benchmark organophosphine PtBu3; 5 a, with a less bulky and electron-rich PR2 moiety, gave a less active catalyst. The reaction of 5 a and [(eta3-C3H5)Pd(NCPh)2]+ BF4- gave the bridging phosphido complex [(eta5-C5H5)Ru(PEt3)2(PPh2)Pd(NCPh)(eta3-C3H5)]+ BAr(F)- in approximately 90 % purity. The crystal structure of 4 a is described, as well as substitution reactions of 3 b and 4 b.  相似文献   

7.
A theoretical analysis allows for the rationalization of the recently reported unusual formation under mild conditions of a cyclobutylidene ring from a diastereoselective [2 + 2] intramolecular cycloaddition of two C=C systems. The reaction takes place by heating in dichloromethane the vinylidene complexes [Ru((eta(5),eta(3)-C(9)H(7))[=C=C(R)H][kappa(1)-(P)-PPh(2)(C(3)H(5))](PPh(3))][BF(4)] (R = Ph, p-Me-C(6)H(4)) (1) yielding the bicyclic alkylidene complexes [Ru((eta(5),eta(3)-C(9)H(7))[kappa(2)-(P,C)-(=CC(R)HCH(2)CHCH(2)-PPh(2)](PPh(3))][BF(4)] (2). The proposed mechanism represents an alternative to the classical Woodward-Hoffmann's supra-antara approach.  相似文献   

8.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

9.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

10.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

11.
As part of our interest in the design and reactivity of P,O ligands, and because the insertion chemistry of small molecules into a metal alkyl bond is very dependent on the ancillary ligands, the behavior of Pt-methyl complexes containing the beta-phosphonato-phosphine ligand rac-Ph2PCH(Ph)P(O)(OEt)2 (abbreviated PPO in the following) toward CO insertion has been explored. New, mononuclear Pt(II) complexes containing one or two PPO ligands, [PtClMe(kappa2-PPO)] (1), [Pt{C(O)Me}Cl(kappa2-PPO)] (2), [PtMe(CO)(kappa2-PPO)]OTf (3 x OTf), [PtMe(OTf)(kappa2-PPO)] (4), trans-[PtClMe(kappa1-PPO)2] (5), [PtMe(kappa2-PPO)(kappa1-PPO)]BF4 (6 x BF4), [PtMe(kappa2-PPO)(kappa1-PPO)]OTf (6 x OTf), and [Pt{C(O)Me}(kappa2-PPO)(kappa1-PPO)]BF4 (7 x BF4) have been prepared and characterized. Hemilability of the ligands is observed in the cations 6 and 7 in which the terminally bound and chelating PPO ligands exchange their role on the NMR time-scale. The acetyl complexes 2 and 7 are stable in solution, but the former deinserts CO upon chloride abstraction. We also demonstrate the ability of PPO to behave as an assembling ligand and to stabilize a heterometallic Pt-Ag metal complex, [PtMe(kappa2-PPO){mu-(eta1-P;eta1-O)PPO)}Ag(OTf)(Pt-Ag)]OTf (8 x OTf), which was obtained by reaction of 5 with AgOTf to generate more reactive, cationic complexes. Whereas the first equivalent of AgOTf abstracted the chloride ligand, the second equivalent added to the cationic complex with formation of a Pt-Ag bond (2.819(1) A). The complexes 1, 2, 4, 5 x CH2Cl2, and (8 x OTf)2 have been structurally characterized by single-crystal X-ray diffraction. The latter has a dimeric nature in the solid state, with two silver-bound triflates acting as bridging ligands between two Pt-Ag moieties. In addition to the Ag-Pt bond, the Ag+ cation is stabilized by a dative O -->Ag interaction involving one of the PPO ligands.  相似文献   

12.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

13.
The antitumour activity of the organometallic ruthenium(ii)-arene mixed phosphine complexes, [Ru(eta(6)-p-cymene)Cl(PTA)(PPh(3))]BF(4) and [Ru(eta(6)-C(6)H(5)CH(2)CH(2)OH)Cl(PTA)(PPh(3))]BF(4) (PTA = 1,3,5-triaza-7-phosphaadamantane), have been evaluated in vitro and compared to their RAPTA analogues, [Ru(eta(6)-p-cymene)Cl(2)(PTA)] and [Ru(eta(6)-C(6)H(5)CH(2)CH(2)OH)Cl(2)(PTA)] . The results show that the addition of the PPh(3) ligand to increases the cytotoxicity towards the TS/A adenocarcinoma cancer cells, which correlates with increased uptake, but also increases cytotoxicity to non-tumourigenic HBL-100 cells, thus decreasing selectivity. The decrease in selectivity has been correlated to increased DNA interactions relative to proteins, demonstrated by reactivity of the compounds with a 14-mer oligonucleotide and the model proteins ubiquitin and cytochrome-c.  相似文献   

14.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

15.
Reaction of complex [Cp2Mo2(CO)4(micro,eta 2-P2)] (Cp=C5H5 (1)) with CuPF6, AgX (X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4) and [(Ph3P)Au(THF)][PF6] (THF=tetrahydrofuran), respectively, results in the facile formation of the dimers 3 b-h of the general formula [M2({Cp2Mo2 (CO)4(micro,eta 2:eta 2-P2)}2)({Cp2Mo2(CO)4 (micro,eta 2:eta 1:eta 1-P2)}2)][X]2 (M=Cu, Ag, Au; X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4). As revealed by X-ray crystallography, all these dimers comprise dicationic moieties that are well-separated from the weakly coordinating anions in the solid state. If 1 is allowed to react with AgNO2 and LAuCl (L=CO or tetrahydrothiophene), respectively, the dimer [Ag2{Cp2Mo2 (CO)4(micro,eta 2:eta 1:eta 1-P2)}2(eta 2-NO2)2] (5) and the complex [AuCl{Cp2Mo2(CO)4(micro,eta 2:eta 1-P2)}] (6) are formed, which have also been characterised by X-ray crystallography. In compounds 5 and 6, the anions remain coordinated to the Group 11 metal centres. Spectroscopic data suggest that the dimers 3 b-h display dynamic behaviour in solution and this is discussed by using the comprehensive results obtained for 3 g (M=Ag; X=Al{OC(CF3)3}4) as a basis. The interpretation of the experimental results is facilitated by density functional theory (DFT) calculations on 3 g (structures, energetics, NMR shielding tensors). The 31P magic angle spinning (MAS) NMR spectra recorded for the dimers 3 b (M=Cu; X=PF6) and 3c (M=Ag; X=BF4) as well as that of the previously reported one-dimensional (1 D) polymer [Ag2{Cp2Mo2(CO)4(micro,eta 2:eta 1:eta 1-P2)}3(micro,eta 1:eta 1-NO3)]n[NO3]n (4) are also discussed herein and the strong dependence of the chemical shift of the phosphorus atoms within each compound on subtle structural differences in the solid state is demonstrated. Furthermore, the X-ray crystallographic and 31P MAS NMR spectroscopic characterisation of a new polymorph of 1 is reported.  相似文献   

16.
The one-step synthesis of three new P2O-terdentate carboxylic acid ditertiary phosphines 2-{(Ph2PCH2)2N}-3-(X)C6H3CO2H (X = OCH3, L1; X = OH, L2) and 2-{(Ph2PCH2)2N}-5-(OH)C6H3CO2H (L3) by a phosphorus-based Mannich condensation reaction using Ph2PCH2OH and the appropriate amine in CH3OH is reported. Compounds L1-L3 function as typical kappa2-P2-didentate ligands upon complexation to Pd(CH3)Cl(cod) (cod = cycloocta-1,5-diene), affording the neutral, mononuclear complexes Pd(CH3)Cl(L1-L3) (1-3). Metathesis of 1 with NaX (X = Br, I) gave the corresponding (methyl)bromopalladium(II) (4) and (methyl)iodopalladium(II) (5) complexes, respectively. When chloroform or chloroform/methanol solutions of 1-3 (or 5) were allowed to stand, at ambient temperatures, yellow crystalline solids were isolated in very high yields (71-88%) and were analyzed for the novel hexameric palladium(II) compounds 6-9. All new compounds reported have been fully characterized by a combination of spectroscopic (multinuclear NMR, Fourier transform IR, electrospray mass spectrometry, matrix-assisted laser desorption ionization time-of-flight mass spectrometry) and analytical methods. The self-assembly reactions are remarkably clean as monitored by 31P{1H} and 1H NMR spectroscopy. Single-crystal X-ray structures have been determined for L1, 4, 7.17CDCl3.2Et2O, 8.6CHCl3.8CH3OH, and 9.17CDCl3. In hexamers 7-9, all six square-planar palladium(II) metal centers comprise a kappa2-P2-chelating diphosphine, a kappa1-O-monodentate carboxylate, and either a chloride or iodide ligand, leading to 48-membered metallomacrocycles (with outside diameters of ca. 2.5 nm). Whereas only intramolecular O-H...N hydrogen bonding between the hydroxy group and tertiary amine has been observed in 7, strong intermolecular O-H...O hydrogen bonding of the type CO...HO(CH3)...HO, involving a methanol solvate, has been found in 8, leading to an unprecedented three-dimensional network motif.  相似文献   

17.
The reactions of M(CO)5X (M = Mn, Re; X = Cl, Br) with (Ph2PCH2)3CCH3 (P3) and (Ph2P(CH2)2)3P (P3P') are investigated, and the products are characterized by IR, NMR (31P and 13C), and electrospray mass spectrometric (ESMS) techniques. With P3, the major products are fac-M(CO)3(eta 2-P3)X (syn and anti isomers) and cis,fac-M(CO)2(eta 3-P3)X, and with P3P', the major product for each metal is cis,mer-M(CO)2(eta 3-P3P')X, but cis-[M(CO)2(eta 4-P3P')]X and fac-[Re(CO)3(eta 3-P3P')]X are also characterized. Addition of MeI to those complexes containing pendant phosphine groups produces the corresponding phosphonium cations without affecting the remainder of the molecule. On the voltammetric time scale, electrochemical oxidation of cis,fac-Mn(CO)2(eta 3-P3)X yields the corresponding 17e cation cis,fac-[Mn(CO)2(eta 3-P3)X]+, but on the longer time scale of exhaustive electrolysis or chemical oxidation, the product is fac-[Mn(CO)3(eta 3-P3)]+. In contrast, the rhenium cation cis,fac-[Re(CO)2(eta 3-P3)X]+ is stable on the synthetic time scale, but upon oxidation of cis,fac-Re(CO)2(eta 3-P3)X with NOBF4, the final product is the 18e [Re(CO)(NO)(eta 3-P3)X]+. cis,mer-Mn(CO)2(eta 3-P3P')X is reversibly oxidized to cis,mer-[Mn(CO)2(eta 3-P3P')X]+ on the voltammetric time scale, but on the longer synthetic time scale, the product isomerizes to trans-[Mn(CO)2(eta 3-P3P')X]+, which can be reduced to trans-Mn(CO)2(eta 3-P3P')X. Upon voltammetric oxidation, the corresponding rhenium complexes show an initial irreversible response associated with the pendant phosphine group prior to the reversible oxidation of the metal on the synthetic time scale; spectroscopic data indicate formation of cis,mer-Re(CO)2(eta 3-P3P'O)X. The complex cis,mer-[Re(CO)2(eta 3-P3P'Me)X]+ shows only the reversible metal oxidation response. ESMS data are obtained directly for the methylated cationic complexes, and neutral complexes are either oxidized or adducted with sodium ions to produce cationic species.  相似文献   

18.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

19.
Disulfide-bridged dinuclear ruthenium complexes [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-X)(mu,eta(2)-S(2))][ZnX(3)(MeCN)] (X = Cl (2), Br (4)), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(2)(mu,eta(1)-S(2))](CF(3)SO(3)) (5), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(2)-S(2))](BF(4)) (6), and [[Ru(MeCN)(2)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(1)-S(2))](CF(3)SO(3))(3) (7) were synthesized, and the crystal structures of 2 and 4 were determined. Crystal data: 2, triclinic, P1, a = 15.921(4) A, b = 17.484(4) A, c = 8.774(2) A, alpha = 103.14(2) degrees, beta = 102.30(2) degrees, gamma = 109.68(2) degrees, V = 2124(1) A(3), Z = 2, R (R(w)) = 0.055 (0.074); 4, triclinic, P1 a = 15.943(4) A, b = 17.703(4) A, c = 8.883(1) A, alpha = 102.96(2) degrees, beta = 102.02(2) degrees, gamma = 109.10(2) degrees, V = 2198.4(9) A(3), Z = 2, R (R(w)) = 0.048 (0.067). Complexes 2 and 4 were obtained by reduction of the disulfide-bridged ruthenium complexes [[RuX(P(OMe)(3))(2)](2)(mu-X)(2)(mu,eta(1)-S(2))] (X = Cl (1), Br (3)) with zinc, respectively. Complex 5 was synthesized by oxidation of 2 with AgCF(3)SO(3). Through these redox steps, the coordination mode of the disulfide ligand was converted from mu,eta(1) in 1 and 3 to mu,eta(2) in 2 and 4 and further reverted to mu,eta(1) in 5. Electrochemical studies of 6 indicated that similar conversion of the coordination mode occurs also in electrochemical redox reactions.  相似文献   

20.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号