首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study investigates the synthesis and effectiveness of gold/gelatin nanoparticles (NPs) biopolymer as a carrier for methotrexate (MTX) drug. Two different shapes of gold particles, including spherical AuNPs (50 & 100 nm) and gold nanorods (AuNRs) with three different sizes (20, 50 and 100 nm length) were synthesized using the chemical reduction method. The effect of AuNPs size and shape on the entrapment efficiency (E.E), the release rate of the drug, and cellular uptake were investigated. The surfaces of both AuNPs and AuNRs were coated with a gelatin biopolymer, and the stability and property of the generated compounds were studied. Moreover, MTX as a chemotherapeutic agent was loaded on the gelatin-coated AuNPs/AuNRs complexes. The physicochemical properties of the gelatin-coated AuNPs/AuNRs complexes were studied using ultraviolet-visible (UV–Vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The E.E and MTX release behavior from the complexes at pH values of 7.4 and 5.4 and temperatures of 37 and 40 °C were investigated in vitro. The cytotoxic effects of AuNPs, AuNPs-Gelatin, AuNPs-Gelatin-MTX, AuNRs, AuNRs-Gelatin, AuNRs-Gelatin-MTX and free MTX were studied. The results indicated that the E.E of AuNPs was higher than that of AuNRs. The highest release rate of the drug was related to the AuNR1-gelatin complex (pH 5.4 and temperature of 40 °C). In addition, MTX loaded AuNR2-gelatin showed the highest cytotoxic effect on the MCF-7 breast cancer cell line so that even its cell cytotoxicity was more than that of the free drug.  相似文献   

2.
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml.  相似文献   

3.
A simple biological method for the synthesis of gold nanoparticles (AuNPs) using Cassia auriculata aqueous leaf extract has been carried out in the present study. The reduction of auric chloride led to the formation of AuNPs within 10 min at room temperature (28°C), suggesting a higher reaction rate than chemical methods involved in the synthesis. The size, shape and elemental analysis were carried out using X-ray diffraction, TEM, SEM-EDAX, FT-IR and visible absorption spectroscopy. Stable, triangular and spherical crystalline AuNPs with well-defined dimensions of average size of 15-25 nm were synthesized using C. auriculata. Effect of pH was also studied to check the stability of AuNPs. The main aim of the investigation is to synthesize AuNPs using antidiabetic potent medicinal plant. The stabilizing and reducing molecules of nanoparticles may promote anti-hyperglycemic if tested further.  相似文献   

4.
《印度化学会志》2021,98(11):100197
Herein we report an eco-friendly and cost efficient synthesis of Fe doped ZnO (TPFZO) nanoparticles using the extract of Thespesia polpulanea flowers as a stabilizing agent. The synthesized NPs have been characterized by XRD, FT-IR, UV-DRS, SEM, EDAX and TEM studies. The synthesized NPs were found to have the crystallite size in the range of 30–60 ​nm. The calculated band gap energies for ZO and TPFZO nanoparticles were 3.00 ​eV and 1.97 ​eV respectively. The size distribution of the ZO and TPFZO obtained from TEM were observed to be lying in the range 50–120 ​nm and 4–22 ​nm respectively. The interaction of TPFZO NPs with bovine serum albumin (BSA) has been studied using fluorescence and absorption titration methods. The results indicated that the nanoparticles quenched the BSA fluorescence at 340 ​nm via static quenching mode having a bimolecular quenching rate constant value of 6.21 ​× ​1013 Lmol−1s−1.  相似文献   

5.
Recently, the production of nanoparticles using biological resources has gained considerable attention due to their application for animal and human well-being. In this study, we used a green synthesis to fabricate gold and silver nanoparticles by reducing HAuCl4 and AgNO3 into AuNPs and AgNPs, respectively, using Dudleya brittonii (DB) extract. The physio-chemical properties of the synthesized nanoparticles were analyzed using a UV–vis spectrophotometer, FESEM, EDX, HR-TEM, AFM and FT-IR. Furthermore, the antimicrobial and cytotoxicity activities of DB-AuNPs and DB-AgNPs against livestock pathogenic bacteria and different cell lines, as well as anti-oxidant activity, were investigated. DB synthesized AuNPs and AgNPs were mostly spherical with a few triangular rods and sizes ranging of 5–25 nm and 10–40 nm, respectively. The in vitro antibacterial and antifungal studies demonstrated the DB-AuNPs and DB-AgNPs have good antibacterial activity against E. coli and other livestock pathogens, including Y. pseudotuberculosis and S. typhi. Cell studies revealed that the higher concentrations of both DB-AuNPs and DB-AgNPs (1 µg/ml to 1 mg/ml) showed potent cytotoxicity in chicken cells after 24 hrs, whereas the middle and lower concentrations of DB-AuNPs and DB-AgNPs did not show cytotoxicity in selected cell lines after 24 hrs. In addition, the DB synthesized AuNPs and AgNPs exhibited good free scavenging activity in a dose-dependent manner. Therefore, the biosynthesized nanoparticles can be utilized by the livestock industry to develop an effective source against livestock microbial infections.  相似文献   

6.
Bio-synthesis approach for gold nanoparticles (AuNPs) has received tremendous attention as an efficient and eco-friendly process. However, kinetic growth and colloidal stability of AuNPs synthesized by this process remained challenging. In this study, Elaeis guineensis (oil palm) kernel (OPK) extract prepared in an ionic liquid (IL)[EMIM][OAc] (1-ethyl-3-methylimidazolium acetate) was employed to control and tune the size and morphology of AuNPs. Synthesized AuNPs were characterized using UV-vis spectrophotometer, dynamic light scattering (DLS) and transmission electron microscopy (TEM) to observe any changes in absorbance, surface charge and particle size, respectively. IL mediated AuNPs were examined for 120 days and found well dispersed and stable at room temperature. UV-vis analysis demonstrated that volume of extract played an important role to control the stability of AuNPs. After 120 days, only 8.86% reduction from maximum absorbance was observed using 2 mL of volume of extract, which was elevated to 47.64% in case of 0.3 mL. TEM analysis was performed periodically after day 1, day 30, day 60, day 90 and day 120 and minor increase in the size was observed. Insignificant change in zeta potential value after 120 days supported enhanced stability of IL mediated AuNPs. Crystalline nature of AuNPs was confirmed by X-ray diffraction (XRD) pattern. The particles size and zeta potential of AuNPs was measured as 8.72 nm and −18.7 mV, respectively. However, the absence of [EMIM][OAc] from OPK extract resulted into larger particles size (9.64 nm), low zeta potential value (−13.9 mV) and enhanced aggregation of particles. Finally, experimental data were used to predict the theoretical and the experimental settling time for AuNPs to evaluate colloidal stability.  相似文献   

7.
Gold nanoparticles (AuNPs) can be used as delivery vehicles for platinum anticancer drugs, improving their targeting and uptake into cells. Here, we examine the appropriateness of different-sized AuNPs as components of platinum-based drug-delivery systems, investigating their controlled synthesis, reproducibility, consistency of drug loading, and stability. The active component of cisplatin was tethered to 25, 55, and 90 nm AuNPs, with the nanoparticles being almost spherical in nature and demonstrating good batch-to-batch reproducibility (24.37 ± 0.62, 55.2 ± 1.75, and 89.1 ± 2.32 nm). The size distribution of 25 nm AuNPs has been significantly improved, compared with a previous method that produces polydispersed nanoparticles. Attachment of platinum to the AuNP surface through a poly(ethylene glycol) (PEG) linker exhibits an increase in the drug loading with increasing particle size: 25 nm (815 ± 106 drug molecules per AuNP), 55 nm (14216 ± 880), and 90 nm (54487 ± 15996). The stability of the naked, PEGylated, and platinum-conjugated nanoparticles has been examined over time under various conditions. When stored at 4 °C, there is minimal variation in the diameter for all three AuNP sizes; variation after 28 days for the 25 nm AuNPs was 2.4%; 55 nm, 3.3%; and 90 nm, 3.6%. The 25 nm AuNPs also demonstrate minimal changes in UV-visible absorbance over the same time period.  相似文献   

8.
A simple and green approach for the synthesis of well‐stabilized gold nanoparticles (AuNPs) using gum Acacia (GA) is presented here. The gum acacia acts as the reductant and stabilizer. The synthesized gold nanoparticles were characterized by using ultraviolet visible (UV‐Vis), fourier transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques. The UV‐Vis study revealed a distinct surface plasmon resonance at 520 – 550 nm, due to the formation of AuNPs. FTIR analysis showed the evidence that –OH groups present in the gum matrix were responsible in reducing the tetra chloroauric acid into AuNPs. XRD studies confirmed the formation of well crystalline nanoparticles with fcc structure and the particle size ranges from 4 – 29 nm, as indicated by TEM analysis. The synthesized gold nanoparticles exhibited homogeneous catalytic activity. The two model reactions studied were the reduction of p‐nitro phenol and the reduction of hexacyanoferrate (III) by borohydride ions. Both the reactions were monitored by UV‐Vis spectroscopy. The kinetic investigations were carried out for the AuNPs‐catalyzed reactions at different temperatures and different amount of catalyst.  相似文献   

9.
During recent years investigation on the development of eco-friendly processes for production of gold nanoparticles (GNPs) have received much attention due to hazardous effects of chemical compounds used for nanoparticle preparation. In the present study, the purified laccase from Paraconiothyrium variabile was applied for synthesis of Au nanoparticles (AuNPs) and the properties of produced nanoparticles were characterized. The UV-vis spectrum of formed AuNPs showed a peak at 530 nm related to surface plasmon absorbance of GNPs represented the formation of gold nanoparticles after 20 min incubation of HAuCl(4) (0.6 mM) in the presence of 73 U laccase at 70°C. Transmission electron microscopy (TEM) image of AuNPs showed well dispersed nanoparticles in the range of 71-266 nm as determined by the laser light scattering method. The pattern of energy dispersive X-ray (EDX) of the prepared GNPs confirmed the structure of gold nanocrystals.  相似文献   

10.
In this work, we exhibited the results of the green synthesis of gold nanoparticles by aqueous extract of Schinus molle L. leaves. The chemical reaction was carried out by varying the plant extract/precursor salt ratio concentration in the aqueous solution. The structural characterization of the nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis showed that the as-synthesized AuNPs have a face-centered cubic structure. SEM and TEM observations indicated that most of the obtained particles have multiple twinning structures (MTP). The synthesized Au-MTP have particle sizes in the range of 10–60 nm, most of them with an average size of about 24 nm. However, triangular Au plate particles were also obtained, having an average size of 180 nm. Fourier transforms infrared spectroscopy and shows that the functional groups responsible for the chemical reduction of AuNPs are phenolic compounds present in the S. molle L. leaf.  相似文献   

11.
Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.  相似文献   

12.
Gold nanoparticles (AuNPs) have shown a potential for biological applications due to their biocompatibility and high efficiency in drug delivery. Most of the times, the chemical routs are being used to synthesize the AuNPs products. In this paper, eco-friendly non-chemical rout was used to prepare AuNPs by utilizing hibiscus and curcumin extracts as reducing and stabilizing agents, and subsequently their anticancer activities were investigated. The synthesized AuNPs were characterized by using ultraviolet–visible spectroscopy (UV–Vis spectroscopy), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). UV–Vis spectroscopy analysis confirmed the characteristics absorption peak of gold, and FTIR findings were highlighted the characteristics boding. SEM and TEM analyses showed that the particles were predominantly spherical in shape. The particles were well dispersed when they were prepared under Hibiscus extracts with average size ~ 13 nm. An interesting morphology was observed when AuNPs were prepared with curcumin, where particles displayed an interconnected morphology (average size ~ 18 nm). The anticancer cell activity of AuNPs was studied against human colorectal carcinoma cells (HCT-116) and breast cancer cells (Michigan Cancer Foundation-7 (MCF-7)). The results of anticancer study showed that the treatment of cancer cells with AuNPs decreased the number of cells significantly as compared to control cells. The AuNPs -Hibiscus specimen showed a better inhibiting property than AuNPs -Curcumin, which is attributed to their uniform dispersion and small size.  相似文献   

13.
The biological synthesis of gold nanoparticles (AuNPs) of various shapes (triangle, hexagonal, and spherical) using hot water olive leaf extracts as reducing agent is reported. The size and the shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Only 20 min were required for the conversion into gold nanoparticles at room temperature, suggesting a reaction rate higher or comparable to those of nanoparticles synthesis by chemical methods. The variation of the pH of the reaction medium gives AuNPs nanoparticles of different shapes. The nanoparticles obtained are characterized by UV–Vis spectroscopy, photoluminescence, transmission electron microscopy (TEM), X-ray diffraction (XRD), FTIR spectroscopy and thermogravimetric analysis. The TEM images showed that a mixture of shapes (triangular, hexagonal and spherical) structures was formed at lower leaf broth concentration and high pH, while smaller spherical shapes were obtained at higher leaf broth concentration and low pH.  相似文献   

14.
利用柠檬酸钠还原法制备了13nm胶体金,透射电子显微镜表征其具有良好的单分散性,通过它与牛血清蛋白(BSA)作用的紫外-可见光谱表明其对蛋白具有良好的生物亲和性。以羊抗人免疫球蛋白G(IgG)修饰的金纳米粒子作探针,基于金纳米粒子免疫聚集导致其消光系数和分散度的变化建立了人IgG的比率光度分析方法。结果表明所制备的纳米金标记探针在人IgG浓度100ng/mL~100μg/mL范围内有良好的线性响应,加标法测定结果表明该法具有良好的回收率和精密度。以细胞色素C(CytoC)和辣根过氧化物酶(HRP)两种蛋白质作对照实验,发现所制备的金纳米探针对IgG具有高度的特异性。  相似文献   

15.
The design and synthesis of a novel linear thioether‐based ligand subunit with a tetraphenylmethane core used in the stabilisation of gold nanoparticles (AuNPs) are presented. Mono‐, tri, penta‐ and heptamers of the ligand have been synthesised and used to stabilise AuNPs by enwrapping. With the exception of the monomer, all ligands provide reliable long‐term stability and redispersibility for the coated nanoparticles in common organic solvents. Despite variation of the oligomer length, all stable particles were of the same size within error tolerance (1.16±0.32 nm for the trimer, 1.15±0.30 nm for the pentamer, 1.17±0.34 nm for the heptamer), as investigated by transmission electron microscopy (TEM). These findings suggest that not only the number of sulfur atoms in the ligand, but also its bulkiness play a crucial role in stabilising the AuNPs. These findings are supported by thermogravimetric analysis (TGA), showing that AuNPs stabilised by the penta‐ or heptamer are passivated by a single ligand. Thermal stability measurements suggest a correlation between ligand coverage and thermal stability, further supporting these findings.  相似文献   

16.
Gold nanoparticles conjugated with DNA represent an attractive and alternative platform for broad applications in biosensors, medical diagnostic, and biological analysis. However, current methods to conjugate DNA to gold nanoparticles are time-consuming. In this study, we report a novel approach to rapidly conjugate DNA to gold nanoparticles (AuNPs) to form functional DNA/AuNPs in 2-3 h using Tween 80 as protective agent. With a fluorescence-based technique, we determine that the DNA density on the surface of AuNPs achieves about ~60 strands per particles, which is comparable to the loading density in the current methods. Moreover, the DNA/AuNPs synthesized by our approach exhibit an excellent stability as a function of temperature, pH, and freeze-thaw cycle, and the functionality of DNA/AuNPs conjugates is also verified. The work presented here has important implications to develop the fast and reproducible synthesis of stable DNA-functionalized gold nanoparticles.  相似文献   

17.
The green synthesis of silver nanoparticles with the small size and high stability paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of silver nanoparticles is gaining more importance owing its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. In this study, focus on biosynthesis of silver nanoparticles using Polygonum hydropiper extract and its catalytic degradation of hazardous dye, methylene blue has been highlighted. The rapid reduction of silver (Ag) ions was monitored using UV-Visible spectrophotometer and showed formation of silver nanoparticles within less than one hour with maximum absorption of silver nanoparticles at 430 nm. The major functional groups present in the synthesis responsible for the formation of silver nanoparticles. It was identified by using Fourier Transform Infrared spectrophotometer (FTIR). Field Electron Scanning Microscope (FESEM) was used to characterise the nanoparticles synthesized using P.hydropiper. The morphology of silver nanoparticles was predominantly spherical and aggregated into irregular structure with average diameter of 60 nm. In addition, this report emphasizes the effect of the silver nanoparticles on the degradation rate of hazardous dyes by sodium borohydride (NaBH4). The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study.  相似文献   

18.
Homogeneous spherical palladium (Pd) nanoparticles were synthesized by pulsed laser ablation of a solid Pd foil target submerged in deionized water, without the addition of any external chemical surfactant. The influence of laser wavelength (355, 532, and 1064 nm) and fluence (8.92, 12.74, and 19.90 J/cm2) on nucleation, growth, and aggregation of Pd nanoparticles were systematically studied. Microstructural and optical properties of the obtained nanoparticles were studied by field emission transmission electron microscopy (FETEM), energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. FETEM micrographs indicate that the average nanocrystallite sizes are relatively low (3–6 nm) and homogeneous for the particles synthesized at the laser wavelengths of 355 and 532 nm. However, at a laser wavelength of 1064 nm, the average nanocrystallite size is relatively large and inhomogeneous in nature. Moreover, we observe that the mean diameter and production rate of particles increases with an increase in laser fluence. The selected area electron diffraction patterns obtained from isolated Pd nanoparticles show the characteristic diffused electron diffraction rings of polycrystalline materials with a face-centered cubic structure. Absorbance spectrum of the synthesized nanoparticle solution shows a broad absorption band, which corresponds to a typical inter-band transition of a metallic system, indicating the production of pure palladium nanoparticles. The present work provides new insights into the effect of laser wavelength and fluence on the control of size and aggregation of palladium nanoparticles in the liquid medium.  相似文献   

19.
We report the electrochemistry of gold nanoparticles (AuNPs), prepared by Laser Ablation Synthesis in Solution (LASiS), via the electrocatalytic oxidation of glucose upon single nanoparticle collisions at inert microelectrodes. Spherical AuNPs with diameters in the range 20–30 nm, as determined by transmission electron microscopy, were synthesized by LASiS of a gold plate immersed in water. Nanoparticle collisions were electrochemically detected through the AuNP-catalysed oxidation of glucose at carbon fiber microelectrodes in alkaline solution, enabling the electrocatalytic detection of single AuNPs. This approach provides a basis for detecting and understanding the electrocatalytic properties of pristine nanoparticles in aqueous solutions.  相似文献   

20.
Surface-sensitive quantitative studies of competitive molecular adsorption on nanoparticles were conducted using a modified attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy method. Adsorption isotherms for thiolated poly(ethylene glycol) (SH-PEG) on gold nanoparticles (AuNPs) as a function of molecular mass (1, 5, and 20 kDa) were characterized. We find that surface density of SH-PEG on AuNPs is inversely proportional to the molecular mass (M(m)). Equilibrium binding constants for SH-PEG, obtained using the Langmuir adsorption model, show the binding affinity for SH-PEG is proportional to M(m). Simultaneous competitive adsorption between mercaptopropionic acid (MPA) and 5 kDa SH-PEG (SH-PEG5K) was investigated, and we find that MPA concentration is the dominant factor influencing the surface density of both SH-PEG5K and MPA, whereas the concentration of SH-PEG5K affects only SH-PEG5K surface density. Electrospray differential mobility analysis (ES-DMA) was employed as an orthogonal characterization technique. ES-DMA results are consistent with the results obtained by ATR-FTIR, confirming our conclusions about the adsorption process in this system. Ligand displacement competitive adsorption, where the displacing molecular species is added after completion of the ligand surface binding, was also interrogated by ATR-FTIR. Results indicate that for SH-PEG increasing M(m) yields greater stability on AuNPs when measured against displacement by bovine serum albumin (BSA) as a model serum protein. In addition, the binding affinity of BSA to AuNPs is inhibited for SH-PEG conjugated AuNPs, an effect that is enhanced at higher SH-PEG M(m) values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号