首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Polymer gel electrolytes based on poly(acrylic acid)-poly(ethylene glycol) (PAA–PEG) hybrid have been prepared and applied to developed quasi-solid-state dye-sensitized solar cells (DSCs). PAA–PEG hybrid was synthesized by polymerization reaction. Quasi-solid-state DSCs were fabricated with synthesized PAA–PEG electrolyte. The effects of alkali iodides LiI, KI, and I2 concentrations on liquid electrolyte absorbency and ionic conductivity of PAA–PEG were investigated. The evolution of the solar cell parameters with polymer gel electrolyte compositions was revealed. DSCs based on PAA–PEG with optimized KI/I2 concentrations showed better performances than those with optimized LiI/I2 concentrations. The electrochemical impedance spectroscopy technique was employed to examine the electron lifetime in the TiO2 electrode and quantify charge transfer resistances at the TiO2/dye/electrolyte interface and the counter electrode in the solar cells based on the PAA–PEG hybrid gels. A maximum conversion efficiency of 4.96% was obtained for DSCs using KI based quasi-solid electrolyte under 100 mW cm−2. Our work suggests that KI can be the promising alkali metal iodide for improving the performance of PAA–PEG hybrid gel DSCs.  相似文献   

2.
Various iodide ion conducting polymer electrolytes have been studied as candidate materials for fabricating photoelectrochemical (PEC) solar cells and energy storage devices. In this study, enhanced ionic conductivity values were obtained for the ionic liquid tetrahexylammonium iodide containing polyethylene oxide (PEO)-based plasticized electrolytes. The analysis of thermal properties revealed the existence of two phases in the electrolyte, and the conductivity measurements showed a marked conductivity enhancement during the melting of the plasticizer-rich phase of the electrolyte. Annealed electrolyte samples showed better conductivity than nonannealed samples, revealing the existence of hysteresis. The optimum conductivity was shown for the electrolytes with PEO:salt = 100:15 mass ratio, and this sample exhibited the minimum glass transition temperature of 72.2 °C. For this optimum PEO to salt ratio, the conductivity of nonannealed electrolyte was 4.4 × 10−4 S cm−1 and that of the annealed sample was 4.6 × 10−4 S cm−1 at 30 °C. An all solid PEC solar cell was fabricated using this annealed electrolyte. The short circuit current density (I SC), the open circuit voltage (V OC), and the power conversion efficiency of the cell are 0.63 mA cm−2, 0.76 V, and 0.47% under the irradiation of 600 W m−2 light.  相似文献   

3.
The anion-conducting polymer electrolyte polyethylene oxide (PEO)/ethylene carbonate (EC)/Pr4N+I/I2 is a candidate material for fabricating photo-electrochemical (PEC) solar cells. Relatively high ionic conductivity values are obtained for the plasticized electrolytes; at room temperature, the conductivity increases from 7.6 × 10−9 to 9.5 × 10−5 S cm−1 when the amount of EC plasticizer increases from 0% to 50% by weight. An abrupt conductivity enhancement occurs at the melting of the polymer; above the melting temperature, the conductivity can reach values of the order of 10−3 S cm−1. The melting temperature decreases from 66.1 to 45.1 °C when the EC mass fraction is increased from 0% to 50%, and there is a corresponding reduction in the glass transition temperature from −57.6 to −70.9 °C with the incorporation of the plasticizer. The static dielectric constant values, , increase with the mass fraction of plasticizer, from 3.3 for the unplasticized sample to 17.5 for the 50% EC sample. The dielectric results show only small traces of ion-pair relaxations, indicating that the amount of ion association is low. Thus, the iodide ion is well dissociated, and despite its large size and relatively low concentration in these samples, the iodide ion to ether oxygen ratio is 1:68, a relatively efficient charge carrier. A further enhancement of the ionic conductivity, especially at lower temperatures, is however desired for these applications.  相似文献   

4.
Poly(3,4-ethylenedioxythiophene) nanofibers (PEDOT-NF) with high catalytic activity were synthesized and employed as a counter electrode in dye-sensitized solar cells (DSSCs). A polymeric ionic liquid (PIL) was used as a gelling agent and an iodide source for making a highly conductive gel polymer electrolyte. A quasi-solid-state DSSC assembled with this PIL-based gel polymer electrolyte and PEDOT-NF counter electrode exhibited high conversion efficiency of 8.12% at 100 mW cm 2.  相似文献   

5.
A new kind of polymer electrolyte is prepared from N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP1.3TFSI), polyethylene oxide (PEO), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). IR and X-ray diffraction results demonstrate that the addition of ionic liquid decreases the crystallization of PEO. Thermal and electrochemical properties have been tested for the solid polymer electrolytes, the addition of the room temperature molten salt PP1.3TFSI to the conventional P(EO)20LiTFSI polymer electrolyte leads to the improvement of the thermal stability and the ionic conductivity (x = 1.27, 2.06 × 10−4 S cm−1 at room temperature), and the reasonable lithium transference number is also obtained. The Li/LiFePO4 cell using this polymer electrolyte shows promising reversible capacity, 120 mAh g−1 at room temperature and 164 mAh g−1 at 55 °C.  相似文献   

6.
Poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide (PEMEImI) as a single-ion conductor was designed and synthesized. When appropriate amount of suitable plasticizers, I2 and polyacrylonitrile (PAN) were incorporated into it, the complex formed gel polymer electrolyte. Chemical structure, thermal behavior and ionic conductive properties of the gel polymer electrolyte were investigated by Raman spectra, UV-Vis spectra, differential scanning calorimetry (DSC), and complex impedance analysis, respectively. For the new gel polymer electrolyte, the ionic conductivity of about 1 × 10−3 S cm−1 at room temperature was achieved.  相似文献   

7.
以琼脂糖为聚合物基质,N-甲基-2-吡咯烷酮(NMP)为溶剂,磁性纳米氧化镍颗粒作为添加剂用于制备染料敏化太阳能电池(DSSC)的磁性聚合物电解质。通过SEM与离子电导率测试研究不同纳米氧化镍掺杂浓度对磁性聚合物电解质的影响,并对相应的染料敏化太阳能电池进行光电性能测试与电化学交流组抗谱(EIS)测试,结果表明:1.0wt%的纳米氧化镍掺杂浓度为最优掺杂浓度,在此浓度下聚合物电解质的表面形貌较为平整,同时电解质具备最高离子电导率(2.43×10-3S.cm-1);染料敏化太阳能电池的光电效率与电子寿命均随着纳米氧化镍掺杂浓度的增加而先增加后降低,并都在纳米氧化镍掺杂浓度为1.0wt%达到最大,此时电池的光电效率为1.63%、开路电压为0.57 V、短路电流密度为5.8 mA.cm-2、填充因子为0.53。  相似文献   

8.
The development of polymer gel electrolyte system with high ionic conductivity is the main objective of polymer research. Electrochemical devices based on lithium ion-conducting polymer electrolyte are not safe due to the explosive nature of lithium. An attempt has been made to synthesize magnesium ion-conducting polymeric gel electrolytes, poly (vinylidene fluoride-co-hexafluoropropylene)–propylene carbonate–magnesium perchlorate, PVdF(HFP)-PC–Mg(ClO4)2 using standard solution-cast techniques. The maximum room temperature ionic conductivity of the synthesized electrolyte system has been observed to be 5.0 × 10−3 S cm−1, which is quite acceptable from a device fabrication point of view. The temperature-dependent conductivity and the dielectric behavior were also analyzed. The pattern of the temperature-dependent conductivity shows the Arrhenius behavior. The dielectric constant ε r and dielectric loss ε i increases with temperature in the low-frequency region but almost negligible in the high-frequency region. This behavior can be explained on the basis of electrode polarization effects. The real part M r and imaginary part M i versus frequency indicate that the systems are predominantly ionic conductors. Further, the synthesized electrolyte materials have been checked for its suitability in energy storage devices namely redox supercapacitor with conducting polymer polypyrrole as electrode materials, and finally, it was observed that it shows good capacitive behavior in low-frequency region. Preliminary studies show that the overall capacitance of 22 mF cm−2 which is equivalent to a single electrode specific capacitance of 117 F gm−1 was observed for the above said supercapacitors.  相似文献   

9.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   

10.

Performance of dye-sensitized nano-crystalline TiO2 thin film-based photo-electrochemical solar cells (PECSCs) containing gel polymer electrolytes is largely governed by the nature of the cation in the electrolyte. Dependence of the photovoltaic performance in these quasi-solid state PECSCs on the alkaline cation size has already been investigated for single cation iodide salt-based electrolytes. The present study reports the ionic conductivity dependence on the nature of alkaline cations (counterion) in a gel polymer electrolyte based on binary iodides. Polyacrylonitrile-based gel polymer electrolyte series containing binary iodide salts is prepared using one of the alkaline iodides (LiI, NaI, KI, RbI, and CsI) and tetrapropylammonium iodide (Pr4NI). All the electrolytes based on binary salts have shown conductivity enhancement compared to their single cation counterparts. When combined with Pr4NI, each of the Li+, Na+, K+, Rb+, and Cs+ cation containing iodide salts incorporated in the gel electrolytes has shown a room temperature conductivity enhancement of 85.59, 12.03, 12.71, 20.77, and 15.36%, respectively. The conductivities of gel electrolytes containing binary iodide systems with Pr4NI and KI/RbI/CsI are higher and have shown values of 3.28, 3.43, and 3.23 mS cm−1, respectively at room temperature. The influence of the nature of counterions on the performance of quasi-solid state dye-sensitized solar cells is investigated by assembling two series of cells. All the binary cationic solar cells have shown more or less enhancements of open circuit voltage, short circuit current density, fill factor, and efficiency compared to their single cation counterparts. This work highlights the importance of employing binary cations (a large and a small) in electrolytes intended for quasi-solid state solar cells. The percentage of energy conversion efficiency enhancement shown for the PECSCs made with electrolytes containing Pr4NI along with Li+, Na+, K+, Rb+, and Cs+ iodides is 260.27, 133.65, 65.27, 25.32, and 8.36%, respectively. The highest efficiency of 4.93% is shown by the solar cell containing KI and Pr4NI. However, the highest enhancements of ionic conductivity as well as the energy conversion efficiency were exhibited by the PECSC made with Li+-containing binary cationic electrolyte.

  相似文献   

11.
The processes of ionic conductivity are studied in a polymer gel electrolyte synthesized based on polyesterdiacrylate and a low-molecular solvent ethylene carbonate. The self-diffusion coefficients of solvent molecules and Li+ cations are measured by the NMR with the pulsed magnetic field gradient. The Li+ self-diffusion coefficients increase with the increase in the solvent content and are independent of the diffusion time in the interval from 10 to 1600 ms. The latter values imply the absence of limitations for the translational mobility of lithium ions in the spatial range from 10−7 to 10−5 m. Based on the Nernst-Einstein equation, the ionic conductivities are calculated and compared with the experimental conductivities measured by the impedance method. These values coincide for high contents of solvent; for low ethylene carbonate concentrations, the calculated conductivities much exceed the experimental values.  相似文献   

12.
The effect of a gel polymer electrolyte (GPE) as the redox electrolyte used in dye-sensitized solar cells was studied. A GPE solution consisting of 0.5?M sodium iodide, 0.05?M iodine, and ethylene carbonate/propylene carbonate (1:1 w/w) binary solvents was mixed with increasing amounts of styrene–acrylonitrile (SAN). Bulk conductivity measurements show a decreasing trend from 4.54 to 0.83×10?3?S?cm?1 with increasing SAN content. The GPE exhibits Newtonian-like behavior and its viscosity increases from 0.041 to 1.093?Pa?s with increasing SAN content. A balance between conductivity (1.3?×?10?3?S?cm?1) and viscosity (1.4?Pa?s) is observed at 19?wt.% SAN. Fourier transform infrared spectroscopy detects elevated ring torsion at 706?cm?1 upon the addition of SAN into the liquid electrolyte. This indicates that SAN does not bond with the liquid electrolyte. Finally, the potential stability window of 19?wt.% SAN, which ranges from ?1.68 to 1.38?V, proves its applicability in solar cells.  相似文献   

13.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

14.
A polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors was prepared for fabricating a quasi-solid-state dye-sensitized solar cell (QS-DSSC). The in situ synthesized Acac-Py-I2 ionic conductors show weaker influence on the liquid electrolyte absorbency of the polymer gel electrolyte than that of Acac-Py-I2 ionic conductors dissolved in liquid electrolyte. Owing to the higher liquid electrolyte absorbency, the polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors shows higher ionic conductivity than that of polymer gel electrolyte with Acac-Py-I2 ionic conductors absorbed from liquid electrolyte. QS-DSSC containing the polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors shows 3.815% energy conversion efficiency, which is 21.6% higher than that of QS-DSSC containing polymer gel electrolyte with Acac-Py-I2 ionic conductors absorbed from liquid electrolyte.  相似文献   

15.
The plasticized polymer electrolytes composed of poly(epichlorohydrin-ethyleneoxide) (P(ECH-EO)) as host polymer, lithium perchlorate (LiClO4) as salt, γ-butyrolactone (γ-BL), and propylene carbonate (PC) as plasticizer have been prepared by simple solution casting technique. The effect of mixture of plasticizers γ-BL and PC on conductivity of the polymer electrolyte P(ECH-EO):LiClO4 has been studied. The band at 457 cm−1 in the Raman spectra of plasticized polymer electrolyte is attributed to both the ring twisting mode of PC and the perchlorate ν 2(ClO4) bending. The maximum conductivity value is observed to be 4.5 × 10−4 S cm−1 at 303 K for 60P(ECH-EO):15PC:10γ-BL:15LiClO4 electrolyte system. In the present investigation, an attempt has been made to correlate the Raman and conductivity data.  相似文献   

16.
A novel composite polymeric gel comprising room-temperature ionic liquids (1-butyl-3-methyl-imidazolium-hexafluorophosphate, BMImPF6) and heteropolyacids (phosphotungstic acid, PWA) in poly(2-hydroxyethyl methacrylate) matrix was successfully prepared and employed as a quasi-solid state electrolyte in dye-sensitized solar cells (DSSCs). These composite polymer electrolytes offered specific benefits over the ionic liquids and heteropolyacids, which effectively enhanced the ionic conductivity of the composite polymer electrolyte. Unsealed devices employing the composite polymer electrolyte with the 3% content of PWA achieved the solar to electrical energy conversion efficiency of 1.68% under irradiation of 50 mW cm−2 light intensity, increasing by a factor of more than three compared to a DSSC with the blank BMImPF6-based polymer electrolyte without PWA. It is expected that these composite polymer electrolytes are an attractive alternative to previously reported hole transporting materials for the fabrication of the long-term stable quasi-solid state or solid state DSSCs.  相似文献   

17.
Chemically crosslinked polyacrylamide-based hydrogel has been first used as the polymer matrix to prepare quasi-solid-state polysulfide electrolyte for CdS/CdSe co-sensitized solar cells (QDSCs). The room temperature ionic conductivity of the gel electrolyte reaches 0.093 S·cm?1. QDSCs based on this quasi-solid-state electrolyte can present up to 4.0% of light-to-electricity conversion efficiency. Meanwhile, the interfacial recombination at TiO2/electrolyte interface of the cell is also investigated by Electrochemical Impedance Spectroscopy (EIS).  相似文献   

18.
Cross-linked gel polymer electrolytes containing aluminum oxide nanoparticles are successfully prepared using in-situ chemical cross-linking at room temperature after injection of the gel precursor into a dye-sensitized solar cell (DSSC). This makes it possible to directly solidify the electrolyte in the cell without leakage of solvent and to maintain close interfacial contact with the porous TiO2 electrode. The quasi-solid-state DSSC assembled with gel polymer electrolyte containing 20 wt.% Al2O3 particles yields an overall conversion efficiency of 5.25% under AM 1.5 illumination at 100 mW cm− 2.  相似文献   

19.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

20.
Effect of fumed silica dispersion on poly(vinylidene fluoride-co-hexafluoropropylene)-based magnesium ion-conducting gel polymer electrolyte has been studied using various physical and electrochemical techniques. The composite gel electrolytes are free-standing and flexible films with enough mechanical strength. The optimized composition with 3 wt.% filler offers a maximum ionic conductivity of ∼1.1 × 10−2 S cm−1 at ∼25 °C with good thermal and electrochemical stabilities. The Mg2+ ion conduction in the gel nanocomposite film is confirmed from the cyclic voltammetry, impedance spectroscopy, and transport number measurements. The space-charge layers formed between filler particles and gel electrolyte are responsible for the enhancement in ionic conductivity. The applicability of the gel nanocomposite to a rechargeable battery is examined by fabricating a prototype cell consisting of Mg [or Mg-multiwalled carbon nanotube (MWCNT) composite] and MoO3 as negative and positive electrodes, respectively. The discharge capacity and the rechargeability of the cell have been improved when Mg metal is substituted by Mg-MWCNT composite. The discharge capacity of the optimized cell has found to be ∼175 mAh g−1 of MoO3 for an initial ten charge–discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号