首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 202 毫秒
1.
贵金属铂对镍基催化剂上萘转化性能的影响   总被引:10,自引:0,他引:10  
李增喜  陈霄榕 《催化学报》2003,24(4):253-258
 在常压连续流动固定床反应器上,以萘作为生物质气化气中焦油的模型化合物,研究了Pt对Ni/Al2O3催化剂上萘的转化率、CO和H2的选择性及收率的影响,比较了Ni-Pt/Al2O3和Ni/Al2O3两种催化剂上萘的水蒸气转化所产生的积碳量和副产物的种类,并初步考察了Ni-Pt/Al2O3催化剂上萘的水蒸气转化反应的动力学.  相似文献   

2.
利用固定床反应器对生物油的水蒸气非催化气化性能进行了实验研究,考察了温度和水蒸气的加入量对气化过程的影响,对气化所得粗合成气的组成分布进行了分析.结果表明,升高温度有利于生物油向合成气转化,1200℃时,生物油的碳转化率可达97.8%,合成气有效成分(H2+CO)的产率可达77%,其中H2/CO摩尔比为1.19;水蒸气的加入可以提高合成气中的H2/CO摩尔比,当S/C(水碳比)=4时,合成气中的H2/CO摩尔比可达3.69,与此同时,水蒸气的加入不利于合成气有效成分产率的提高;生物油气化所得气体为中热值气体.  相似文献   

3.
CaO对褐煤在超临界水中制取富氢气体的影响   总被引:5,自引:2,他引:5  
以褐煤在超临界水中制取富氢气体为目的,利用小型高压间歇反应装置,在Ca/C 摩尔比为0~0.60、温度450℃~680℃、压力23MPa~38MPa和停留1min~30min下,考察了小龙潭褐煤的反应特性。研究表明,CaO不仅可以固定气相中的CO2,提高H2的体积分数,而且可以提高碳转化率和气体产率。600℃、28MPa,Ca/C摩尔比为0.42时,气相产物中的CO2趋于完全固定,H2产率比无添加剂时提高2.5倍,H2体积分数为48%,其余为CH4和烃类气体。升高反应温度使CaO的催化作用更为显著, 碳转化率和气体产率(H2、CH4、烃类气体)随着反应温度的升高而逐渐增加,液相收率减少。增大反应压力可以促使煤转化率和气体产率升高,停留时间对反应的影响相对较小。以900℃热解焦为反应原料进行了气化实验,结果表明,在600℃和650℃反应5min后,碳转化率分别为8.6%和12.5%,CaO对气化反应和甲烷化反应起不同程度的催化作用。  相似文献   

4.
朱鹏  李雪辉  徐建昌  黄苑  王乐夫 《催化学报》2005,26(10):905-910
 对硫化NiW/Al2O3催化剂上H2同时还原SO2和NO反应进行了研究,探讨了温度、空速、H2配比以及Ni负载量对反应的影响. 结果表明,催化剂的活性随反应温度的升高而增加,550 ℃时, SO2和NO在15%Ni-10%W/Al2O3上的转化率达100%,单质硫的产率达90%以上; 增加空速对NO转化率和单质硫的选择性影响不大,但SO2转化率及单质硫产率明显下降; 提高n(H2)/n(SO2+NO)的比值可显著提高SO2转化率,但单质硫选择性明显下降,其比值为2.0时单质硫产率最大,随后随H2浓度的增加而迅速下降, NO转化率几乎不受H2配比的影响; 增加催化剂的Ni含量可明显提高各反应物的转化率及单质硫的选择性和产率; 预硫化过程对催化剂性能有很大影响,是获得高活性催化剂的必要条件. 催化剂稳定性测试及XRD结果表明,催化剂不会因为晶格硫的大量流失而失活. 最后,提出了H2同时还原SO2和NO反应的机理.  相似文献   

5.
采用沉淀法或醇凝胶法、浸渍法制备Cu/ZrO2催化剂,在常压微型固定床石英管反应器上进行乙醇水蒸气重整反应,采用程序升温还原(TPR)技术表征催化剂的还原特性。考察了催化剂还原温度、反应温度、水醇比、空速等对反应的影响以及催化剂的稳定性。结果表明,在300℃~500℃,随反应温度升高,乙醇转化率增大,H2选择性下降。不同还原温度对转化率的影响不是很大,对于H2选择性,300℃、400℃还原的催化剂优于500℃还原的催化剂。高水醇比有利于提高转化率和H2选择性。随空速增大,转化率和H2选择性呈现下降的趋势。8%Cu/ZrO2催化剂在400℃或450℃反应22h显示出良好的稳定性。  相似文献   

6.
考察了反应温度、气体空速和进料中CH4:O2比值对Mo2C/Al2O3催化的POM反应制合成气的影响.结果发现较高的温度具有较高的甲烷转化率、CO和H2的选择性;而在较低的温度下,对CO的选择性比对H2的影响更大.反应气体的空速较小时对于甲烷的转化率、CO和H2的选择性是有利的;而在较高的气体空速下,氢气的选择性则更低.进料中CH4:O2比值稍高于2:1时有利于获得高的甲烷转化率、CO和H2的选择性.并且还可以增加催化剂的稳定性.当CH4:O2比值低于2:1时.甲烷转化率、CO和H2选择性随反应的进行急剧下降.而当此比值调整到高于2:1时.转化率和选择件都可以得到恢复。  相似文献   

7.
聚光太阳能加热昭通褐煤的气化试验研究   总被引:1,自引:0,他引:1  
以云南昭通褐煤为原料,在聚光太阳能气化炉内,分别对昭通褐煤热解、气化过程中热解温度、气化温度及蒸汽流量等工艺参数对产品煤气成分的影响规律进行了试验研究。结果表明:随热解温度升高,煤气中CO2含量逐渐减少,H2含量增加;在800℃以前CO和CH4含量随着温度的升高而增加,当温度高于800℃后其含量随温度的升高而降低。在蒸汽流量一定的条件下,随气化温度升高,煤气中CO2、H2的含量下降,CO含量上升;在一定的气化温度下,随蒸汽流量的增加,煤气中CO2、H2含量增加,CO含量下降。同时根据热解产物量,分别对热解煤气产率、热解效率、热解强度等进行了计算,并通过能量收支平衡计算,得出太阳能的转化率为38.24%。  相似文献   

8.
 用喷雾干燥法制备了微球状Fe/Cu/K/SiO2催化剂,并在不同的反应条件下对其在浆态床F-T合成反应中的催化性能进行了评价. 结果表明,反应温度和原料气H2/CO比的调变对催化剂运行稳定性的影响较大,反应初始阶段加入的液体石蜡介质对催化剂运行稳定性的影响不大. 原料气空速的增加可有效地提高反应的总烃时空产率,但同时CO转化率会明显降低,且重质烃选择性下降; 低H2/CO比的原料气有利于在保持合适的转化率的同时提高重质烃的选择性,并可明显提高总烃的时空产率; 提高系统压力可增大催化剂的催化活性,改善重质烃的选择性; 而提高反应温度尽管可明显提高催化剂活性,但同时也会促进WGS反应的发生,降低重质烃的选择性. 因此,浆态床F-T合成反应中操作参数的适当调变可使催化剂活性、产物烃分布和烃产率得到有效优化,最大限度地获得目的产物.  相似文献   

9.
利用固定床反应器对生物油的水蒸气非催化气化性能进行了实验研究,考察了温度和水蒸气的加入量对气化过程的影响,对气化所得粗合成气的组成分布进行了分析。结果表明,升高温度有利于生物油向合成气转化,1 200 ℃时,生物油的碳转化率可达97.8%,合成气有效成分(H2+CO)的产率可达77%,其中H2/CO摩尔比为1.19;水蒸气的加入可以提高合成气中的H2/CO摩尔比,当S/C(水碳比)=4时,合成气中的H2/CO摩尔比可达3.69,与此同时,水蒸气的加入不利于合成气有效成分产率的提高;生物油气化所得气体为中热值气体。  相似文献   

10.
La2NiO4/Al2O3催化剂上CH4/CO2的重整   总被引:8,自引:1,他引:8  
 通过溶胶-凝胶方法制备了尖晶石结构的La2NiO4/Al2O3催化剂,采用BET,XRD和TG表征了催化剂的孔分布、比表面积、体相组成以及凝胶样品的热失重和热分解过程.将催化剂应用于CH4/CO2重整反应制合成气,考察了惰性气体和反应温度对转化率、选择性以及积碳的影响.结果表明,在高空速(GHSV=4.8×104ml/(g·h))下,CH4和CO2转化率分别为51%和60%,CO和H2的选择性约为98%和92%,惰性气体He的引入明显地提高了CH4和CO2的转化率.  相似文献   

11.
丙烯腈与衣康酸在DMSO/H_2O中的聚合及聚合物性能表征   总被引:5,自引:0,他引:5  
采用丙烯腈 (AN)与衣康酸 (IA)为共聚单体 ,以偶氮二异丁腈为引发剂在混合介质二甲基亚砜 水(DMSO H2 O)中自由基沉淀共聚合 ,合成了高分子量的聚丙烯腈 .通过正交设计方法研究了聚合反应条件 ,如反应温度、单体浓度、混合介质DMSO H2 O配比等对聚合反应的转化率的影响 ,还重点探讨了混合介质DMSO H2 O配比对转化率和粘均分子量的影响 .采用DSC ,TG ,IR等手段研究了PAN均聚物及 (PAN co IA)的结构与性能 .研究结果表明 ,增加反应温度 ,降低单体浓度 ,降低喂料AN IA配比中IA的含量 ,均有利于提高聚合反应的转化率 .AN与IA共聚反应的转化率随着反应介质中DMSO含量的增加而降低 ,同时聚合物的粘均分子量也降低 .对于喂料AN IA配比中IA含量相同的P(AN co IA)共聚物 ,高分子量P(AN co IA)共聚物比常规低分子量的放热峰起始温度低 ,放热峰宽  相似文献   

12.
采用浸渍法制备了Ni基整体式催化剂,考察了不同条件(温度、时间、空速、水蒸气添加等)对催化剂上生物质粗燃气重整反应性能的影响。结果表明,催化剂在较低温度下(≤500 ℃)只具有CO加氢反应活性,随着反应温度的升高粗燃气重整反应逐渐进行,在800 ℃以上,CH4和C2转化率均高达95 %以上,CO2转化率达到92%,但随着反应空速和水蒸气添加量的增加,CH4和CO2等转化率呈现缓慢降低的趋势。此外,通过改变水蒸气添加量可对合成气中H2/CO体积比在0.85~4.00进行较好调节。结合XRD表征发现,Ni基整体式催化剂中Ni°的生成可较好地促进重整反应的进行。  相似文献   

13.
石油焦水蒸气气化反应特性   总被引:6,自引:3,他引:6  
在常压,900 ℃~1 050 ℃,20%~100%水蒸气分压范围内,在热天平上研究了两种石油焦的气化反应特性。实验表明,在水蒸气气氛下石油焦具有较好的气化反应活性,气化过程中反应速率R=dx/dt在转化率0.2附近有一最大值,而比气化反应速率M=dx/dt/(1-x)则处于单调递增状态。通过对石油焦气化过程中有效比表面积随碳转化率变化的实验表明,以实际碳基为基准的有效比表面积Se随反应的进行不断增大,M和Se的变化趋势相同。  相似文献   

14.
关毅  秦永宁  张鎏 《化学学报》1998,56(3):215-222
研究了833-948K和常压下, C7H16在镍催化剂上进行水蒸汽转化过程中的积碳反应动力学, 获得了相应的动力学方程。并探讨了相应的反应机理, 提出在镍表面同时进行的水蒸汽转化和积碳反应是两个相对独立的反应。指出在较高温度下, 水蒸汽会从简单非解离吸附转变为解离吸附, 这一变化不仅改变了反应级数, 更重要的是它提高了水蒸汽参与表面反应的能力, 特别是加强了氢对积碳反应的作用; 同时庚烷的吸附热也随之产生相当大变化。分析了出现在本温度区内积碳反应负表观活化能的来源。  相似文献   

15.
在加压固定床微分反应器上对霍林河褐煤焦(HLH)、神木烟煤焦(SM)和晋城无烟煤焦(JC)与水蒸气/氢气混合气的加压气化反应特性进行了研究。结果表明,氢气对煤焦水蒸气气化反应具有明显的抑制作用,其抑制作用大小分别随氢气分压、总压和煤阶的提高而增强,而随反应温度升高而减弱;有氢气存在和无氢气存在时煤焦水蒸气气化反应过程都能用相同的动力学模型描述,有氢气存在时煤焦水蒸气气化的最终碳转化率低于纯水蒸气气化的最终碳转化率;氢气对煤焦水蒸气气化反应的抑制机理与氢气的分压范围有关,当氢气分压很低时,氢气的抑制作用主要是由于氢气离解生成的氢原子占据煤焦表面活性位所致,而当氢气分压很高时,氢气的抑制作用主要是由于氧交换反应的逆反应加强所致。  相似文献   

16.
AlMCM-48介孔分子筛对萘异丙基化反应的活性   总被引:1,自引:1,他引:0  
2-烷基萘和2,6-二烷基萘是很有价值的化学品,2-烷基萘可用于染料,药物,香料等精细化学品的生产,2,6-二烷基萘是生产新型聚合材料的重要原料,以煤焦油中萘 原料经傅-克反应可获得烷基萘,工业上传统的液相反应用H2SO4,H4PO4,AlCl3等作催化剂[1],由于存在腐蚀性强,产物分离难,污染重等弊病,人们极力探求性能优良,环境友好的新型催化剂,各种沸石分子筛如ZSM-5,HY,HM,β-沸石等对萘 烷基化反应的催化性能都有探讨^[2-6],据报道,用H-ZSM-5催化萘的甲基反应显示较高的选择性^[2],n(2-甲基萘)/n(1-甲基萘)达到8;(2,6-二甲基萘+2,7-二甲基萘)在二取代产物中达到80.8%,但萘的转化率较低,约10%,由于H-ZSM-5的孔径较小,它对萘的异丙基化反应几乎无活性[6],HY,Hβ对萘的异丙基化反应活性较高,但选择性差,n(2,6-二甲基萘/2,7-二甲基萘)=1,HM对萘的异丙基化反应选择性较高,而萘的转化率不高,约30%^[3-6],掺要Ce的丝光沸石选择性和活性都有所提高[7],本文研究了用后处理方法固载铝的AlMCM-48介孔分子筛对萘的异丙基化反应的催化作用,考察了Si/Al对反应的影响。β  相似文献   

17.
生物油水溶性组分的水蒸气催化重整制氢实验研究   总被引:4,自引:1,他引:3  
利用固定床反应器对生物油水溶性组分重整制氢反应进行了考察,研究了温度、吸收剂的加入对反应过程的影响。结果表明,在常压条件下生物油水溶性组分的最佳重整温度为800℃,此时H2体积分数为60%、CO体积分数为10%。加入CO2吸收剂后,H2体积分数提高了25%,H2产率提高了10%。在常压条件下,以CaO作为吸收剂时,最佳的反应温度为600℃,此时H2体积分数最高可达85%。650℃时CaO对CO2的吸收能力减弱导致其对生成H2反应的促进作用急剧降低。  相似文献   

18.
采用热重法在常压与700℃~900℃条件下的水蒸气气化过程,对两种巴基斯坦Lakhra和Thar褐煤半焦进行了单一和混合催化剂(即3%钙和5%钠-黑液单一催化剂及一种3%钙和5%钠-黑液混合催化剂)对碳转化率、气化反应速率常数及活化能、有害污染含硫气体相对量的催化效应研究.两者Lakhra和Thar褐煤半焦经直接气化就可获得高的碳转化率,但采用纸浆黑液催化剂可使气化速率变得很快.含灰高的Thar褐煤半焦在纸浆黑液催化气化过程更易生成一些复杂的硅酸盐,从而导致比含灰低的Lakhra褐煤半焦出现一个更低的转化率.在水蒸气气化过程由半焦和纸浆黑液自身所产生的SO2 和 H2S含硫气体可为存在于纸浆黑液中的Ca盐所捕获而完成脱硫过程,但这一过程在低于900℃时更有效.缩芯模型 (SCM)可较好地用来关联转化率与时间的关系并给出不同温度下的反应速率常数k.基于阿累尼乌斯方程预测了反应活化能Ea 和指前因子A.在纸浆黑液和钙混合催化及纸浆黑液催化剂时,Lakhra褐煤半焦的Ea分别为44.7kJ/mol和 59.6kJ/mol明显小于Thar褐煤半焦的Ea=114.6kJ/mol 和 Ea=100.8kJ/mol,同样也小于无催化剂纯半焦气化时Lakhra褐煤半焦的Ea=161.2kJ/mol和Thar半焦的Ea=124.8kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号