首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four D‐π‐A‐type nonionic oxime sulfonate photoacid generators (PAGs) have been designed and synthesized for use in light‐emitting diode (LED) excitable cationic photoinitiators, in which N,N‐diphenylamino was used as electron donor with trifluoroacetophenone‐based oxime sulfonates (trifluoromethanoesulfonate and p‐toluenesulfonate) as electron acceptor and substituted fluorene and biphenyl groups as the π‐conjugated systems. PAG‐Ben‐Tol (with biphenyl and p‐toluenesulfonate) and PAG‐Flu‐Tol (with fluorene and p‐toluenesulfonate) showed high quantum yields of photoacid generation (0.33–0.50) and very good thermal stability (over 250 °C). The absorbance spectra of these PAGs were consistent with the emission spectra of commercially gained UV–visible LED light sources. The potential of these PAGs for cationic photoinitiators was tested in two cationic monomer systems. These PAGs needed low light intensity and low concentration for photopolymerization with high conversions of monomer, for example, over 80%, gained at 3.0 mW cm−2 from 365 to 470 nm LEDs. The photochemical mechanisms of these PAGs are comprehensively investigated and discussed in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1146–1154  相似文献   

2.
Photoactive compounds, such as diazonaphthoquinone (DNQ) esters, blended with novolac resins, solvents and certain additives, serve as photoresists. These are used for printing of electronic circuits at the micron or sub‐micron level. Patterns are generated based on changes in the physical and chemical properties of the exposed and unexposed photoresist surfaces (printed circuit boards). The huge polarity change between the exposed and unexposed photoresists is exploited in the technique of microlithography. It is believed that the large polarity difference is due to acid formation in the exposed photoresist by a photochemical reaction of DNQ on exposure to light. However, it has also been suggested that in the unexposed part of a photoresist, the novolac resin undergoes an azo coupling reaction with DNQ, leading to an increase in the molecular weight of the resin, rendering it more insoluble in base. The protons in the para positions of the m‐cresol units incorporated in the novolac resin are believed to take part in this azo coupling reaction with DNQ. In this paper, we propose a novel mechanism of action of positive photoresists in the unexposed part of photoresists for dissolution inhibition using molecular modelling, 1H NMR, 13C NMR and DEPT‐135 NMR spectroscopic techniques. Our results enable us to propose that the diazo group of DNQ attacks the methylene bridges rather than the aromatic moiety of the resin. This mechanism explains the pattern formation observed using even p‐cresol‐based resins, where no free para positions are present in the aromatic ring. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis, thermal, and gas transport properties of poly(hexafluoroisopropylidene isophthalamide), HFA/ISO homopolymer, and HFA/TERT‐co‐HFA/ISO copolyamides with different poly(hexafluoroisopropilydene‐5‐t‐butylisophthalamide), HFA/TERT, ratios are reported. The results indicate that the glass transition temperatures of the copolyamides increase as the concentration of HFA/TERT in the polyamide increases. The gas permeability coefficients in the polyamides and copolyamides are independent of pressure or decrease slightly particularly with CO2, N2, and CH4. It was seen that HFA/TERT is 2–6 times more permeable than HFA/ISO, depending on the gas being considered. This was assigned to the presence of the bulky lateral substituent, t‐butyl group in HFA/TERT and HFA/TERT‐co‐HFA/ISO copolyamides. This substituent increases fractional free‐volume, as expected. Therefore, the gas permeability and diffusion coefficients generally increase with increasing fractional free‐volume. The experimental results for the gas permeability and permselectivity for the copolyamides was well represented by a logarithmic mixing rule of the homopolyamides permeability coefficients and their volume fraction. The selectivity of gas pairs, such as O2/N2, CO2/CH4, and N2/CH4 decreased slightly with the addition of HFA/TERT. The temperature dependence of permeability for homopolyamides and copolyamides can be described by an Arrhenius type equation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2625–2638, 2005  相似文献   

4.
Novel water‐soluble triply‐responsive homopolymers of N,N‐dimethylaminoethyl methacrylate (DMAEMA) containing an azobenzene moiety as the terminal group were synthesized by atom transfer radical polymerization (ATRP) technique. The ATRP process of DMAEMA was initiated by an azobenzene derivative substituted with a 2‐bromoisobutyryl group (Azo‐Br) in the presence of CuCl/Me6TREN in 1,4‐dioxane as a catalyst system. The molecular weights and their polydispersities of the resulting homopolymers (Azo‐PDMAEMA) were characterized by gel permeation chromatography (GPC). The homopolymers are soluble in aqueous solution and exhibit a lower critical solution temperature (LCST) that alternated reversibly in response to Ph and photoisomerization of the terminal azobenzene moiety. It was found that the LCST increased as pH decreased in the range of testing. Under UV light irradiation, the trans‐to‐cis photoisomerization of the azobenzene moiety resulted in a higher LCST, whereas it recovered under visible light irradiation. This kind of polymers should be particularly interesting for a variety of potential applications in some promising areas, such as drug controlled‐releasing carriers and intelligent materials because of the multistimuli responsive property. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2564–2570, 2010  相似文献   

5.
Solubility changes in the irradiation of copolymers bearing photoacid- or photobase-generating groups and low molecular weight photobase generators (PBGs) or photoacid generators (PAGs) were investigated. Copolymers bearing acyloxyimino (AOI) groups were used as those generating pendant amino groups photochemically. Copolymers bearing o-nitrobenzyloxycarbonyl and imino sulfonate groups were used as those generating carboxy and sulfo groups, respectively. The solubility of copolymers bearing AOI groups into polar solvents was enhanced by added PAGs such as β-keto sulfones or imino sulfonates after irradiation. A similar enhancement was observed in copolymers bearing o-nitrobenzyloxycarbonyl groups in the presence of PBGs such as oxime esters or o-nitrobenzyl carbamates. These results showed that the formation of acid–base pairs on irradiation was effective for dissolution into polar solvents. Copolymers bearing imino sulfonate groups showed a high solubility, and no such enhancement was observed by PBG. Films of copolymers bearing β-keto sulfone groups became insoluble because of crosslinking. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1708–1715, 2001  相似文献   

6.
An efficient strategy for comprehensive utilization of the conjugated sulfonium salt photoacid generator (PAG), namely, 3‐{4‐[4‐(4‐N,N′‐diphenylamino)‐styryl]phenyl}phenyl dimethyl sulfonium hexafluoroantimonate, was developed through photoinitiated cationic photopolymerization (CP) of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 425 nm). Photochemical mechanisms were investigated by UV–vis spectra, molecular orbital calculations, fluorescence, cyclic voltammetry, and electron spin resonance spin‐trapping analyses. Compared with commercial PAGs, the prepared conjugated sulfonium salt generated H+, which can be used as photoinitiator. Moreover, the fluorescent byproducts from photodecomposition can be used as photosensitizer of commercial iodonium salt in the photoinitiating systems of CP. These novel D‐π‐A type sulfonium‐based photoinitiating systems are efficient (epoxide conversion = 85–90% and vinyl conversion >90%; LEDs upon exposure to 365–425 nm) even in low‐concentration initiators (1%, w/w) and low curing light intensities (10–40 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2722–2730  相似文献   

7.
The performance of water‐ and solvent‐cast, two‐component photoresist films containing poly(2‐isopropenyl‐2‐oxazoline) or poly(2‐isopropenyl‐2‐oxazoline‐co‐styrene) with a photoacid generator has been investigated. These materials afford negative‐tone images after deep‐UV exposure and development in a suitable medium (water or toluene). Resist solutions prepared from polymers containing at least 80 mol % 2‐isopropenyl‐2‐oxazoline may be cast from and developed in pure water. Features of higher quality can be obtained when the resist is cast from 2‐methoxyethanol, probably because side reactions such as partial hydrolysis of the pendant oxazoline rings in aqueous environments are avoided. It was possible to resolve micrometer scale patterns using ca. 200 mJ/cm2 of irradiation at 254 nm, followed by heating 2 min at 130°C and development in water alone. Image quality and etch resistance were improved using copolymers containing up to 20 mol % of styrene repeat units. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1225–1236, 1999  相似文献   

8.
In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)‐grafted poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP‐g‐PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base‐catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM‐EDX. A chemical stability study performed with Fenton's reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70 °C revealed that FEP‐g‐PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)‐grafted membranes (FEP‐g‐PSSA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 563–569, 2010  相似文献   

9.
A polymer bearing 1,3‐benzoxazine moiety in the side chain was synthesized successfully from poly(allylamine) based on a stepwise strategy consisted of three steps: (1) treatment of poly(allylamine) with salicylaldehyde to convert the amino group in the side chain into the corresponding o‐(iminomethyl)phenol moiety, (2) reduction of the o‐(iminomethyl)phenol to obtain the corresponding o‐(aminomethyl)phenol moiety, and (3) formation of 1,3‐benzoxazine moiety by the reaction of the o‐(aminomethyl)phenol with formaldehyde. The content ratio of benzoxazine moieties and o‐(aminomethyl)phenol moieties in the polymer were tunable by varying amount of formaldehyde. The presence of o‐(aminomethyl)phenol moieties exhibited a significant promoting effect on the crosslinking reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
trans‐Poly(dimethylsilylenearylenevinylene)s (trans‐rich) and cis‐poly(dimethylsilylenearylenevinylene)s (cis‐rich) containing phenylene, biphenylene, and phenylenesilylenephenylene units were prepared by hydrosilylation catalyzed with the RhI(PPh3)3 complex. The addition of a phenylene π unit to poly(silylenephenylenevinylene) expanded the conjugation in the main chain, whereas the insertion of a dimethylsilylene σ unit in the biphenylene moiety reduced the conjugation. UV spectra of the trans‐type polymers showed redshifts and hyperchromic effects with respect to those of the cis‐type polymers, indicating wider conjugation, and the quantum yields of emission of the former polymers were much higher than those of the latter polymers. The quantum yield of the trans‐rich polymer with the biphenylene moiety reached 0.15, which was about 102 times as large as those of trans‐type polymers with phenylene (3.4 × 10?3) and phenylenesilylenephenylene (1.9 × 10?3) moieties. The effects of the geometric structure and π unit on the absorption and emission properties of these polymers were examined with molecular orbital methods. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 535–543, 2002; DOI 10.1002/pola.10139  相似文献   

11.
Fluorene‐based polymers containing various fluorinated benzene (fluorobenzene, p‐difluorobenzene, and tetrafluorobenzene) moieties were synthesized. In addition, perfluorooctylation of poly‐[(9,9‐dioctylfluorene‐2,7‐diyl)‐co‐(fluorene‐2,7‐diyl)] was carried out to afford fluorene‐based polymers with perfluorooctyl moiety at the 9‐position on the fluorene ring. To evaluate the effect of fluorine moiety, polymers containing nonfluorinated benzene moieties and nonfluorinated octyl groups were synthesized. The photoluminescence measurements indicated that all these polymers exhibited blue emission in solution, but a polymer containing a perfluorooctyl group did not emit in the film state. Polymers containing various fluorinated benzene moieties showed higher fluorescence quantum yields and thermal stability than those containing nonfluorinated benzene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3143–3150, 2001  相似文献   

12.
A new positive working photosensitive poly(benzoxazole) (PBO) precursor based on poly(o‐hydroxyazomethine) ( 3 ) and 1‐{1,1‐bis[4‐(2‐diazo‐1‐(2H)naphthalenone‐5‐sulfonyloxy)phenyl]ethyl}‐4‐{1‐[4‐(2‐diazo‐1(2H)naphthalenone‐5‐sulfonyloxy)phenyl]methylethyl}benzene (S‐DNQ) as a photosensitive compound was developed. 3 was prepared by the condensation of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane with isophthalaldehyde in 1‐methyl‐2‐pyrrolidinone/toluene under azeotropic conditions. The photosensitive PBO precursor containing 30 wt % S‐DNQ showed a sensitivity of 120 mJ cm?2 and a contrast of 2.2 when it was exposed to 436‐nm light and developed with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 10‐μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm?2 ultraviolet light at 436 nm by the contact mode. The positive image was successfully converted into the PBO pattern by a thermal treatment. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3399–3405, 2002  相似文献   

13.
New light emitting dendrimers were synthesized by reacting 3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzoic acid or 3,5‐bis‐[3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzyloxy]‐benzoic acid with a carbazolyl vinyl spirobifluorene moiety. A blue‐emitting core dye was encapsulated by multibenzyloxy dendrons, and two dendrimers having different densities of dendrons were prepared. Photoluminescence (PL) studies of the dendrimers demonstrated that at the higher density of benzyloxy dendrons, the featureless vibronic transitions were improved, causing lesser excimer emission. The similarity of the solution and solid emission spectra of the larger dendrimer, 10 , revealed the suppression of molecular aggregation in the solid film, which is attributed to the presence of the bulky benzyloxy dendrons. The electroluminescence spectra of multilayered devices made using 10 predominantly exhibited blue emissions; similar emission was observed in the PL spectra of its thin film. The multilayered devices made using 3 , 9 , and 10 showed luminances of 1021 cd m?2 at 5 V, 916 cd m?2 at 6 V, and 851 cd m?2 at 6.5 V, respectively. The largest dendrimer, 10 , bearing a greater number of benzyloxy dendrons, exhibited a blue‐like emission with CIE 1931 chromaticity coordinates of x = 0.16 and y = 0.13, which is due to the influence of a higher shielding effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 501–514, 2008  相似文献   

14.
In this contribution, we explored the catalytic ring‐opening polymerization (ROP) of (macro)lactones using salen–aluminum complexes bearing cyclic β‐ketoiminato ligand. The effects of bridge moiety and ring size in the benzocyclane skeleton on the catalytic activity of these complexes were thoroughly investigated. Complex 5 with 2,2‐dimethylpropylene bridge and five‐membered cyclane ring can efficiently catalyze the ROP of ω‐pentadecalactone (ω‐PDL), showing higher catalytic activity (turnover frequency [TOF] up to 309.2 h?1) than the typical Al‐salen analogs bearing salicylaldiminato ligand (TOF = 227.2 h?1). Thus, polyethylene‐like polyester with high‐molecular weight (up to 164.5 kg/mol) could be easily prepared under optimal conditions. In addition, complex 5 can also catalyze the ROP of lactide (LA) and ε‐caprolactone (ε‐CL) with extremely high activity (TOF is high up to 147.6 h?1 and 4752 h?1, respectively). Here, we demonstrated a rare mono‐nuclear salen‐Al complex that can prompt the ROP of (macro)lactones with unprecedentedly high efficiency. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 973–981  相似文献   

15.
A novel photo‐acid generator (PAG) bound molecular glass photoresist with a single protecting group has been developed as a promising resist material for use in microelectronics. This single component molecular resist was prepared in four steps starting from 9,9‐bis(4‐hydroxyphenyl)fluorene. The single component molecular resist exhibited good thermal properties, such as a 10% weight loss temperature of 200 °C and a glass transition temperature of 91 °C. This resist showed a good sensitivity of 60 μC/cm2 with e‐beam exposure (50 keV). On the other hand, the fine pattern with a half‐pitch of 50 nm in the presence of 4 wt % quencher, trioctylamine, was obtained using electron‐beam (100 keV) lithography. The LER value was 8.2 nm (3σ, 60 nm half‐pitch patterns). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Selective preparation of poly(p‐oxybenzoyl) (POB) crystals was examined from the viewpoint of a dimer effect on fractional polycondensation. Four different copolymerization systems were chosen as the combinations of p‐acetoxybenzoic acid (p‐ABA), m‐acetoxybenzoic acid (m‐ABA), and their dimers. The crystals obtained from the copolymerization of the dimer of p‐ABA (p‐ABAD) and m‐ABA contained only 3.1 mol % of m‐oxybenzoyl moiety even at high content of m‐oxybenzoyl moiety in feed (χf) of 40 mol %. p‐Oxybenzoyl homo‐oligomers were more rapidly formed from p‐ABAD in the solution than from p‐ABA, and they were crystallized to form the crystals with segregating co‐oligomers. While co‐oligomers containing more m‐oxybenzoyl moiety were formed in the solution, afterward they were unable to be phase‐separated because of higher miscibility. The further polycondensation proceeded in the precipitated crystal, and finally the POB crystal was selectively formed. Lower polymerization temperature and concentration enhanced the fractionability, and the POB crystals containing less than 1 mol % m‐oxybenzoyl moiety were prepared at χf of 30 mol %, 270 °C, and a concentration of 0.5%. The dimer effect on the fractional polycondensation was clearly observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1598–1606, 2008  相似文献   

17.
杨幸幸  邹应全 《应用化学》2009,26(10):1194-1199
本文合成了六种适用于248nm光致抗蚀剂的产酸剂,其中吩噻口恶 体系的产酸剂由本研究室自主设计合成。六种产酸剂均通过IR,HNMR,UV等进行了结构表征,并利用酸敏染料遇酸异构变色的特点定量检测了六种产酸剂的产酸效率,同时使用荧光追踪法研究了溶剂极性对产酸效率的影响,优选出了硫杂蒽酮系列的产酸剂,为进一步用于248nm光致抗蚀剂提供参考。  相似文献   

18.
A new styrene derivative having D ‐mannaric moiety, Np‐vinylbenzyl‐D ‐mannaramic acid (VB‐D ‐ManaH, 8 ) was synthesized though the ring‐opening reaction of D ‐mannaro‐1,4:6,3‐dilactone (D ‐MDL) with p‐vinylbenzylamine. VB‐D ‐ManaH was copolymerized with acrylamide (AAm) to give novel polymers having D ‐mannaric moiety in the pendants, P(VB‐D ‐ManaH‐co‐AAm), 10 . The resulting glycomonomer and polymer ( 8 and 10 ) bearing D ‐mannaric pendants were found to inhibit the β‐glucuronidase activity, although the inhibition ability of the corresponding saccharodilactone (D ‐MDL) was known to be low. Additionally, the inhibition ability of P(VB‐D ‐ManaH‐co‐AAm), 10 , was almost the same as that of the glycopolymer having D ‐glucaric pendants, P(VB‐6‐D ‐GlcaH‐co‐AAm), 1 , which was one of the most effective inhibitors for β‐glucuronidase, reported in our previous work. Thus, 10 and 8 may be the first D ‐mannaric strong inhibitors to the β‐glucuronidase activity. The Lineweaver–Burk plot suggested that the inhibition mechanisms of 10 and 8 were more complicated than in the case of the competitive and uncompetitive inhibition of Np‐(vinylbenzyl)‐6‐D ‐glucaramic ( 11 ) and Np‐(vinylbenzyl)‐1‐D ‐glucaramic acids ( 12 ), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2032–2042, 2009  相似文献   

19.
Monodisperse, crosslinked poly(divinylbenzene) and poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) microspheres with (1R,2R)‐N1‐toluenesulfonyl‐1,2‐diphenylethylene‐1,2‐diamine ((R,R)‐TsDPEN) moiety were successfully prepared by precipitation polymerization. Introduction site of the (R,R)‐TsDPEN moiety into the polymer microspheres could be controlled by changing the order of addition of the corresponding monomers. The functionalized polymer microspheres were applied to asymmetric transfer hydrogenation of ketone and imine. Polymer microsphere‐supported chiral catalysts showed good reactivity and enantioselectivity in the catalytic asymmetric transfer hydrogenations. Chiral secondary alcohol was quantitatively obtained with 94% ee in the asymmetric transfer hydrogenation of acetophenone in water. We also found that introduction site of the chiral catalyst and hydrophobicity of the microspheres, as well as degree of the crosslinking, affected the yield and enantioselectivity of chiral product in this reaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3340–3349, 2010  相似文献   

20.
Low dielectric photopatternable materials have aroused much interest owing to their potential application as alternatives of conventional photoresists. Although a number of photosensitive groups have been established to construct photopatternable materials for many years, it is still a challenge to introduce them into polymer chains via a facile and control polymerization technique, such as living free radical polymerization. In this work, on the basis of the photoactive silaycyclobutene moiety, a new monomer, 1‐methyl‐1‐(4‐vinylphenyl) silacyclobutane (1‐MVPSCB), was synthesized and demonstrated successful to conduct atom transfer radical polymerization (ATRP). Subsequently, the copolymerization of 1‐MVPSCB with 4‐vinylbenzocyclobutene (4‐VBCB) and styrene produced a kind of benzocyclobutene/silacyclobutane double‐crosslinked polymer (BS‐DCP) with controlled benzocyclobutene/silacyclobutane ratios and low polydispersity index. Owing to the UV/thermally dual crosslinked structure, BS‐DCP possesses photapatternability, high dimensional stability and low dielectric constant (2.37 at 10 MHz). These properties make BS‐DCP a potential photoresist that could be directly used as interconnected dielectrics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1920–1928  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号