首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of thermo/pH sensitive N‐succinyl hydroxybutyl chitosan (NSHBC) hydrogels with different substitution degrees of succinyl are prepared for drug delivery. Rheology analysis shows that the gelation temperature of NSHBC hydrogels is 3.8 °C higher than that of hydroxybutyl chitosan (HBC) hydrogels. A model drug bovine serum albumin (BSA) is successfully loaded and released. NSHBC hydrogels show excellent pH sensitivity drug release behaviors. After incubation for 24 h, 93.7% of BSA is released from NSHBC hydrogels in phosphate buffer saline (PBS) (pH 7.4), which is significantly greater than that of 24.6% at pH 3.0. In contrast, the release rate of BSA from HBC is about 70.0% at pH 3.0 and 7.4. Thus, these novel hydrogels have the prominent merits of high adaptability to soluble drugs and pH sensitivity triggered release, indicating that NSHBC hydrogels have promising applications in oral drug delivery.  相似文献   

2.
Cyclodextrin‐based controlled delivery materials have previously been developed for controlled release of different therapeutic drugs. In this study, a supramolecular hydrogel made from cyclodextrin‐based macromonomers is subjected to molecular imprinting to investigate the impact on release kinetics and drug loading, when compared with non‐imprinted, or alternately imprinted hydrogels. Mild synthesis conditions are used to molecularly imprint three antibiotics—novobiocin, rifampicin, and vancomycin—and to test two different hydrogel chemistries. The release profile and drug loading of the molecularly imprinted hydrogels are characterized using ultraviolet spectroscopy over a period of 35 days and compared to non‐imprinted, and alternately imprinted hydrogels. While only modest differences are observed in the release rate of the antibiotics tested, a substantial difference is observed in the total drug‐loading amount possible for hydrogels releasing drugs which has been templated by those drugs. Hydrogels releasing drugs which are templated by other drugs do not show improved release or loading. Analysis by FTIR does not show substantial incorporation of drug into the polymer. Lastly, bioactivity assays confirmed long‐term stability and release of incorporated antibiotics.  相似文献   

3.
The present work is focused on investigating the behavior of controlled drug release poly(N-isopropylacrylamide) (PNIPA) hydrogels in the presence of beta-cyclodextrin (beta-CD). For this purpose, three types of NIPA hydrogels with beta-CD moieties were synthesized with different architectures according to our previous studies. An anti-cancer drug (chlorambucil, CLB), which can form an inclusion complex with beta-CD, was selected for loading and in vitro release studies. The drug was loaded into hydrogels via a swelling method. DSC was used to study the interactions between the CLB molecules and the polymers. The results indicate that the CLB-polymer interactions are at the molecular level. Loading CLB into these polymers can result in an evident decrease in the glass transition temperature (T(g)), and the variation of T(g) (DeltaT(g)) depends on the structures of the polymers and their beta-CD content. The controlled release experiments show that the presence of beta-CD can markedly enhance CLB release from shrunken PNIPA hydrogels and increase the ratio of CLB released in total drug loading content. Release profile of CLB from hydrogels 1a-c and 4 at pH 1.4 and 7.4, at 37 degrees C.  相似文献   

4.
Recently, we reported the synthesis of hydrogels by visible‐light photopolymerization of 2‐hydroxyethylmethacrylate and acrylamide, employing safranine O as sensitizer, and a functionalized silsequioxane (SFMA) as co‐initiator/crosslinker. The influence of the ionic character of a drug on its release rate from the hydrogels was also reported. In the present study, we analyzed the photoinitiation mechanism, the synthesis of hydrogels in the presence of aspirin (ASA) or ibuprofen (Ibu), and their release from hydrogels synthesized with variable SFMA concentrations. Concerning the photoinitiation mechanism, we found that the main contribution was the electron transfer reaction between the excited triplet state of safranine and SFMA, followed by a fast proton transfer reaction from secondary amine groups. The generated nitrogen radicals initiated the copolymerization reaction. The photoreaction quantum yield was 0.031. Concerning the drug‐release study, we found that the release rate of both drugs increased by increasing pH from 7 to 10. This was ascribed to the increase in the partial ionization of the carboxylic acid groups, a fact that reduced the interactions with the secondary amine groups present in SFMA and increased the release rate. The effect was larger for ASA than for Ibu. Increasing the amount of SFMA increased both the crosslink density and the fraction of H‐bonds formed with the drugs. At pH 10, the increment in the crosslink density was dominant for the release of Ibu while the increase in fraction of H‐bonds determined the release rate of ASA. Cytotoxicity studies showed that these materials did not exhibit significant hemolytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
《中国化学会会志》2017,64(2):231-238
Sodium alginate (SA ) was combined with poly(N ‐isopropylacrylamide) (PNIPAAm ) to prepare thermosensitive hydrogels through semi‐interpenetrating polymer network (semi‐IPN ) and fully interpenetrating polymer network (full‐IPN ). The thermosensitive, swelling, mechanical, and thermal properties of pure PNIPAAm , SA /PNIPAAm semi‐IPN , and Ca‐alginate/PNIPAAm full‐IPN hydrogels were investigated. The formation of semi‐IPN and full‐IPN significantly improved the hydrogels’ swelling capability and mechanical properties without altering their thermosensitivity. 5‐Fluorouracil (5‐Fu) was selected as a model drug to study the release behaviors of the hydrogels. It was found that in vitro controlled drug release from semi‐IPN hydrogels showed an initial release burst, followed by a slower and sustained release, before reaching equilibrium. Full‐IPN hydrogels showed slow and sustained release during the whole process. Temperature and pH were found to affect the rate of drug release. Ca‐alginate/PNIPAAm full‐IPN hydrogels have potential application as drug delivery matrices in controlled drug release.  相似文献   

6.
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli‐responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli‐responsive supramolecular complexes and stimuli‐responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli‐responsive biomolecule‐based hydrogels are discussed. The assembly of stimuli‐responsive biomolecule‐based hydrogel films on surfaces and their applications are discussed. The coating of drug‐loaded nanoparticles with stimuli‐responsive hydrogels for controlled drug release is also presented.  相似文献   

7.
In the present research, a type of imprinted hydrogels, in which 5-fluorouracil is complexed non-covalently to the monomers and cross-linked into the hydrogel matrix, is synthesized in order to evaluate the possibility of their applications in sustaining the release of 5-fluorouracil due to the drug’s heightened interactions with the imprinted binding sites. Because of the hydrophility, hydrogels can absorb large amounts of water. As a result, drug release mechanisms are different from hydrophobic polymers. Mathematical model has been established to predict the drug release from the hydrogel matrix as a function of time. The drug release mechanism when immersed in release medium is discussed based on mathematical analysis. Swelling studies are performed and the capability of the hydrogels to reload 5-fluorouracil in aqueous solutions is evaluated. In vitro release studies after reloading are conducted. Mathematical analysis suggest that drug release kinetics from the hydrogels fit Fickian mechanism, further evaluation of the fitness for different hydrogel types reveal that the conformation of binding sites can play a very important role in deciding the kind of drug release mechanism. Experiments reveal that all hydrogels show swelling property. The imprinted hydrogels bind much more 5-fluorouracil than non-imprinted ones, and they sustain 5-fluorouracil release better than non-imprinted hydrogels. This research indicates that the imprinted hydrogels would be a potential promising device for drug delivery.  相似文献   

8.
Thermally responsive hydrogels have drawn significant research attention recently because of their simple use as drug carrier at human body temperature. Here we design a hybrid hydrogel that incorporates a hydrophilic polymer, polyethyleneimine (PEI), into the thermally responsive hydrogel poly(N‐isopropylacrylamide) (PNIPAm), as a general drug carrier model for controlled drug release. In this work, on one hand, PEI modifies the structure and the size of the pores in the PNIPAm hydrogel. On the other hand, PEI plays an important role in tuning the water content in the hydrogel and controls the water release rate of the hydrogel below the lower critical solution temperature (LCST), resulting in a tunable release rate of the drugs at human body temperature (37 °C). Different release rates are shown as different amounts of PEI are incorporated. PEI controls the release rate, dependent on the charge characteristics of the drugs. The hydrogel blends described in this work extend the concept of a general drug carrier for loading both positively and negatively charged drugs, as well as the controlled release effect.  相似文献   

9.
Injectable hydrogels for nonsteroidal anti‐inflammatory drugs’ (NSAIDs) delivery to minimize the side effects of NSAIDs and achieve long‐term sustained release at the targeted site of synovial joint are attractive for osteoarthritis therapy, but how to improve its mechanical strength remains a challenge. In this work, a kind of 1D natural clay mineral material, attapulgite (ATP), is introduced to a classical cyclodextrin pseudopolyrotaxane (PPR) system to form a reinforced supramolecular hydrogel for sustained release of diclofenac sodium (DS) due to its rigid, rod‐like morphology, and unique structure, which has great potential in tissue regeneration, repair, and engineering. Investigation on the interior morphology and rheological property of the obtained hydrogel points out that the ATP distributed in PPR hydrogel plays a role similar to the “reinforcement in concrete” and exhibits a positive effect on improving the mechanical properties of PPR hydrogel by regulating their interior morphology from a randomly distributed style to the well‐ordered porous frame structure. The hybrid hydrogels demonstrate good shear‐thinning and thixotropic properties, excellent biocompability, and sustained release behavior both in vitro and in vivo. Furthermore, preliminary in vivo treatment in an acute inflammatory rat model reveals that the ATP hybrid hydrogels present sustained anti‐inflammatory effect.  相似文献   

10.
The purpose of the study is to obtain multicomponent polyelectrolyte hydrogels with optimal synergistic properties by combining a modified starch with a synthetic one. Thus, new low‐cost and biocompatible semi‐interpenetrating polymer network (semi‐IPN) hydrogels of carboxymethyl starch and poly(2‐dimethylaminoethyl methacrylate) are prepared and investigated. The synthesized hydrogels are studied with respect to the specific characteristics of the gels: swelling kinetics, thermal analysis, viscoelastic characteristics, and their ability to be used as a matrix in drug delivery systems. Therefore, the semi‐IPN gels are loaded with ibuprofen, followed by additional tests to assess the in vitro drug release. The cytocompatibility of the hydrogels with respect to their composition is evaluated in vitro on fibroblast cell culture. The investigations confirm the obtainment of new semi‐IPN hydrogels with pH and temperature responsiveness, good mechanical strength, and potential for use as drug delivery systems or transdermal patches.  相似文献   

11.
Novel β‐cyclodextrin polymer (CD)‐based drug delivery hydrogels were prepared by varying type and concentration of crosslinkers and optimizing the gel synthesis conditions. For comparison, dextrose gels were prepared using the same crosslinkers. The optimized gels were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), and X‐ray diffraction (XRD) as well as swelling and release studies. For drug release studies, the gels were loaded with three different model antibiotics varying in size and hydrophobicity: rifampin (RM), novobiocin (NB), and vancomycin (VM), using a common solvent method. The loading efficiency was calculated and release kinetics were determined in vitro. As expected for affinity‐based mechanisms, the release of drugs, from CD‐based gels, was slower than release from dextrose gels which indicated that the antibiotics all form inclusion complexes with CD. Release kinetics were also more linear in the observed time frame when using CD‐based hydrogels versus dextrose hydrogels. This modification in release depended on the affinity‐between CD and drug, such that larger drugs and more hydrophilic ones had their release profiles altered less than small hydrophobic ones. In conclusion, affinity‐based mechanisms can be used to load antibiotics and obtain longer, more linear release profiles than purely diffusion‐based mechanisms.

  相似文献   


12.
In this article, novel smart hydrogels based on biodegradable pH sensitive poly(L ‐glutamic acid‐g‐2‐hydroxylethyl methacrylate) (PGH) chains and temperature‐sensitive hydroxypropylcellulose‐g‐acrylic acid (HPC‐g‐AA) segments were designed and synthesized. The influence of pH and temperature on the equilibrium swelling ratios of the hydrogels was discussed. The optical transmittance of the hydrogels was also changed as a function of temperature, which reflecting that the HPC‐g‐AA part of the hydrogels became hydrophobic at the temperature above the lower critical solution temperature (LCST). At the same time, the LCST of the hydrogels had a visible pH‐dependent behavior. Scanning electron microscopic analysis revealed the morphology of the hydrogels before and after enzymatic degradation. The biodegradation rate of the hydrogels was directly related to the PGH content and the pH value. The in vitro release of bovine serum albumin from the hydrogels were investigated. The release profiles indicated that both the HPC‐g‐AA and PGH contents played important roles in the drug release behaviors. These results show that the smart hydrogels seem to be of great promise in pH–temperature oral drug delivery systems. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
The insulin therapy constitutes the preferred treatment for Diabetes Mellitus (DM). The traditional insulin therapy, which consists of daily subcutaneous insulin injections to control blood glucose level, is not able to regulate the blood glucose level precisely. In this research, to facilitate the diabetic patient life, an intelligent drug delivery system based on a biodegrable biopolymer to control the insulin release, was designed. In this system, chitosan‐polyethylene glycol hydrogel and glucose oxidize play the role of drug carrier and glucose biosensor, respectively. To increase the hydrogel drug loading capacity, hydrogels with different PEG content were synthesized and insulin was loaded by swelling‐diffusion method into them. The loaded hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), High performance liquid chromatography (HPLC), and Thermogravimetric analysis (TGA). Finally, the thermodynamic study for insulin loading process was performed to investigate the stability of the drug in the system.  相似文献   

14.
The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.  相似文献   

15.
In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules.  相似文献   

16.
Co‐polymeric hydrogels consisting of N‐vinyl‐2‐pyrrolidone (NVP) and acrylic acid (AAc) were synthesized and evaluated for release of a model drug, i.e., vitamin B12. Release studies in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 7.4), at 37°C, showed the hydrogels to be pH sensitive. An in vitro release study by ‘traditional dissolution test’ (TDT) showed that percent drug released from the hydrogel was nearly 8.6±2.1 and 83.2±4.8 in the media of pH 1.2 and 6.8, respectively. However, in order to incorporate in vivo GI conditions such as acidic pH and high water content in the stomach, low water content and the presence of a semi–solid mass in the large intestine, a new test model, called flow through diffusion cell (FTDC) was also used. The two approaches yielded almost different release profiles. The gels were characterized by thermogravimetric analysis and FTIR spectroscopy.  相似文献   

17.
Emphasizing the role of hydrogel stiffness and cellular differentiation, this study develops collagen and elastin‐like polypeptide (ELP)–based bone regenerative hydrogels loaded with recombinant human bone morphogenetic protein‐2 (rhBMP‐2) and doxycycline with mechanical properties suitable for osteogenesis. The drug‐incorporated collagen–ELP hydrogels has significantly higher modulus of 35 ± 5 kPa compared to collagen‐only hydrogels. Doxycycline shows a bi‐phasic release with an initial burst release followed by a gradual release, while rhBMP‐2 exhibits a nearly linear release profile for all hydrogels. The released doxycycline shows anti‐microbial activity against Pseudomonas aeruginosa, Streptococcus sanguinis, and Escherichia coli. Microscopic observation of the hydrogels reveals their interconnected, macroporous, 3D open architecture with pore diameters between 160 and 400 µm. This architecture supports human adipose–derived stem cell attachment and proliferation from initial days of cell seeding, forming a thick cellular sheath by day 21. Interestingly, in collagen and collagen–ELP hydrogels, cell morphology is elongated with stretched slender lamellipodial formation, while cells assemble as spheroidal aggregates in crosslinked as well as drug‐loaded hydrogels. Osteogenic markers, alkaline phosphatase and osteocalcin, are expressed maximally for drug‐loaded hydrogels compared to those without drugs. The drug‐loaded collagen–ELP hydrogels are thus promising for combating bacterial infection and promoting guided bone regeneration.  相似文献   

18.
With the ever-increasing demands for personalized drugs, disease-specific and condition-dependent drug delivery systems, four-dimensional (4D) printing can be used as a new approach to develop drug capsules that display unique advantages of self-changing drug release behavior according to the actual physiological circumstances. Herein, a plant stomata-inspired smart hydrogel capsule was developed using an extrusion-based 4D printing method, which featured with UV cross-linked poly(N-isopropylacrylamide) (PNIPAM) hydrogel as the capsule shell. The lower critical solution temperature (LCST) of the PNIPAM hydrogels was approximately 34.9 °C and macroporous PNIPAM hydrogels were prepared with higher molecular weight polyethylene glycols (PEGs) as the pore-forming agents. Owing to the LCST-induced shrinking/swelling properties, the prepared PNIPAM hydrogel capsules exhibited temperature-responsive drug release along with the microstructure changes in the PNIPAM hydrogels. The in vitro drug release test confirmed that the PNIPAM hydrogel capsules can autonomously control their drug release behaviors on the basis of ambient temperature changes. Moreover, the increased PEG molecular weights in the macroporous PNIPAM hydrogel capsules caused an obvious improvement of drug release rate, distinctly indicating that the drug release profiles can be well programmed by adjusting the internal pore size of the hydrogel capsules. In vitro biocompatibility studies confirmed that the PNIPAM hydrogel capsules have great potential for biomedical applications. The bioinspired 4D printed hydrogel capsules pioneer the paradigm of smart controlled drug release.  相似文献   

19.
Degradable hydrogels crosslinked with disulfide bonds were prepared by Michael addition between amine groups of branched polyethylenimine and carbon–carbon double bonds of N,N′‐bis(acryloyl)cystamine. The influences of the chemical composition of the resulted hydrogels on their properties were examined in terms of morphology, surface area, swelling kinetics, and degradation. The hydrogels were uniformly crosslinked and degraded into water‐soluble polymers in the presence of the reducing agent of dithiothreitol, which improved the control over the release of encapsulated drug. The degradation of hydrogels can trigger the release of encapsulated molecules, as well as facilitate the removal of empty vehicles. Results obtained from in vitro drug release suggested that the disulfide crosslinked hydrogels exhibited an accelerated release of encapsulated drug in dithiothreitol‐containing PBS buffer solution. Moreover, the drug release rate decreased gradually with increasing crosslinking density. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4074–4082, 2009  相似文献   

20.
The thermo‐responsiveness, swelling and mechanical properties of a series of novel poly(ester‐ether urethane) hydrogels have been investigated. These thermo‐sensitive hydrogels were obtained by combining hydrophobic biodegradable poly(ε‐caprolactone) diols and hydrophilic two‐, three‐ and four‐arm hydroxyl terminated poly(ethylene glycol) (PEG) of various molecular weights, using hexamethylene diisocyanate, dichloroethane as solvent and a tin‐based catalyst. The use of multifunctional PEGs leads to the formation of covalent crosslinking points allowing an additional control of the swelling capability. Thus, it was found that tuning the hydrophilic/hydrophobic balance and the crosslinking degree by changing the composition, the swelling and the thermo‐responsive behavior of these hydrogels could be modulated. The obtained hydrogels showed a volume transition at around room temperature. Therefore, and taking into account their biocompatibility, these hydrogels show promising properties for biomedical applications, such as drug delivery. Thus, the loading and release of diltiazem hydrochloride, an antihypertensive drug used as model, were investigated. These new PEG polyurethane hydrogels were able to incorporate a high amount of drug providing a sustained release after an initial burst effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号