首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The stable free radical polymerization (SFRP) of styrene, initiated with benzoyl peroxide in the presence of TEMPO, under bulk conditions, is demonstrated to proceed rapidly without the need for any rate enhancing additives such as camphorsulfonic acid, 2‐fluoro‐1‐methyl pyridinium p‐toluenesulfonate, or acetic anhydride. Monomer conversions as high as 70% can be achieved in 5 h or less while maintaining polydispersity indexes of 1.15. These results stand in stark contrast to earlier reactions that required 70 h to achieve similar conversions. This study demonstrates that the single largest factor governing the rates of polymerization is the molar concentration of excess TEMPO remaining in solution after initiation. A reduction in the TEMPO to BPO ratio is required when large amounts of BPO are used to target low molecular weight polystyrenes. However, when a lower molar amount of BPO is used to obtain high molecular weight polystyrenes, a higher TEMPO to BPO ratio is required. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5487–5493, 2007  相似文献   

2.
This study examined the use of a new tetrafunctional peroxide initiator in the bulk free‐radical polymerization of methyl methacrylate. The objective was to investigate the effect of using a multifunctional initiator through an examination of the rates of polymerization and the polymer properties. The molecular weights and radii of gyration were obtained with a size exclusion chromatograph equipped with an online multi‐angle laser light scattering detector. The performance of the tetrafunctional initiator was compared to that of a monofunctional counterpart [tert‐butylperoxy 2‐ethylhexyl carbonate (TBEC)]. The results showed that the new tetrafunctional peroxide initiator produced a faster rate of polymerization than TBEC at an equivalent concentration but also generated a polymer of a lower molecular weight. This trend was the opposite of what was observed in a previous study with styrene. When TBEC was used at a concentration four times that of the new tetrafunctional peroxide initiator, both produced equal rates of polymerization and similar molecular weights. The degree of branching was also investigated with radius‐of‐gyration plots. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5647–5661, 2004  相似文献   

3.
Densely branched poly(methyl methacrylate)s have been synthesized by copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) using atom transfer free radical polymerization (ATRP). By employing the phenyl and benzyl esters of 2-bromo-2-methylpropionic acid as the initiators with 2,2-bipyridyl and Cu(I)Cl it has been possible to use high field 1H nuclear magnetic resonance spectroscopy to evaluate in some detail the composition and structure of the branched PMMAs obtained. Parallel molar mass size exclusion chromatographic analysis using a multi-angle light scattering detector with a refractive index detector (MALS/SEC) has allowed the branched architecture of the products to be confirmed. Rather remarkably, high yields of branched PMMAs can be obtained without crosslinking using MMA/EGDMA molar feed ratios of up to 5/1 by appropriate adjustment of the molar feed of initiator. In particular by maintaining the EGDMA/initiator molar feed ratio ∼1/1 fully soluble products can be obtained that are densely branched since this feed ratio ensures that on average each living primary chain initiated contains on average only one branching EGDMA segment. As might be expected this controlled free radical process offers better control in the synthesis of branched polymer than the corresponding system we have reported using conventional free radical polymerization, and unlike the latter which requires the use of a chain transfer agent, the ATRP system requires no additional chain regulating component. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2375–2386, 2007  相似文献   

4.
AB2 monomers present opportunities to conduct one‐pot syntheses of highly branched or “hyperbranched” polymers, which are known for their distinct physical and chemical properties relative to linear polymers. This paper describes the synthesis of a deoxybenzoin‐containing AB2 monomer and its use in step‐growth polymerization to prepare branched aromatic polyesters. Highly soluble deoxybenzoin polymers were obtained with degrees of branching reaching 0.36 and estimated molecular weights approaching 20 kDa. The phenolic chain ends of the polymer allowed for post‐polymerization modification by silylation and esterification chemistry. TGA and microscale combustion calorimetry revealed these novel aromatic polyesters to possess the critically important characteristics of flame‐retardant polymers, such as high char yield and low heat release. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1765–1770  相似文献   

5.
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 °C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield. The molecular weights (Mws) increased with monomer conversions because of the controlled radical polymerization characteristic, whereas the Mw distributions broadened showing a result of the gradual increase of the degree of branching. The evolution of branched structure has been confirmed by a triple detection size exclusion chromatography (TRI‐SEC) and NMR technique. Furthermore, the double bonds in the side chains were successfully used for chemical modification reactions. 1H NMR and FTIR measurements reveal that the great mass of pendant vinyl groups were converted to the corresponding objective end‐groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6023–6034, 2008  相似文献   

6.
The feasibility of utilizing stable free‐radical polymerization (SFRP) in the synthesis of well‐defined poly(2‐vinylnaphthalene) homopolymers has been investigated. Efforts to control molecular weight by manipulating initiator concentration while maintaining a 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO):benzoyl peroxide (BPO) molar ratio of 1.2:1 proved unsuccessful. In addition, systematic variations of the TEMPO: BPO molar ratio did not result in narrow molecular weight distributions. In situ Fourier transform infrared spectroscopy (FTIR) indicated that the rate of monomer disappearance under SFRP and thermal conditions were identical. This observation indicated a lack of control in the presence of the stable free radical, TEMPO. The similarities in chemical structure between styrene and 2‐vinylnaphthalene suggested thermally initiated polymerization occurred via the Mayo mechanism. A kinetic analysis of the thermal polymerization of styrene and 2‐vinylnaphthalene suggested that the additional fused ring in 2‐vinylnaphthalene increased the propensity for thermal polymerization. The observed rate constant for thermal polymerization of 2‐vinylnaphthalene was determined using in situ FTIR spectroscopy and was one order of magnitude greater than styrene, assuming pseudo‐first‐order kinetics. Also, an Arrhenius analysis indicated that the activation energy for the thermal polymerization of 2‐vinylnaphthalene was 30 kJ/mol less than styrene. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 583–590, 2002; DOI 10.1002/pola.10131  相似文献   

7.
2,2,6,6‐Tetramethyl‐4‐[d‐(+)‐10‐camphorsulfonyl]‐1‐piperidinyloxy was synthesized and used as a chiral nitroxide for the bulk polymerizations of styrene initiated with benzoyl peroxide (BPO), tetraethylthiuram disulfide (TETD), and thermal initiation. The results showed that the polymerizations proceeded in a controlled/living way; that is, the kinetics presented approximately first‐order plots, and the number‐average molecular weights of the polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) increased with the monomer conversion linearly. The molecular weight distributions in the case of thermal initiation were narrower than those in the case of BPO and TETD, whereas the polymerization rate with BPO or TETD as an initiator was obviously faster than that with thermal initiation. In addition, successful chain‐extension reactions were carried out, and the structures of the obtained polymers were characterized by gel permeation chromatography and 1H NMR. The specific rotations of the polymers were also measured by polarimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1522–1528, 2006  相似文献   

8.
Polystyrene has been typically prepared with radical polymerization by benzoyl peroxide (BPO) or azobisisobutyronitrile (AIBN). In this report, polymerization of styrene was carried out by radical cations of polyaniline (PANI). Polarons of conducting polymers are consisting of radical cations. The polarons bear electrical conduction as a charge carrier. We employ the polarons as an initiator for radical polymerization. Polymerization of styrene and acrylonitrile by the polarons was conducted to explore new possibility of conducting polymers. Fourier‐transfer infrared absorption (FTIR) spectroscopy measurements for the resultant polymers obtained with polarons of polyaniline indicates that the polystyrene thus synthesized grows from polyaniline. The qualitative solubility, average molecular weight, and thermal stability are comparable to that of polystyrene obtained by the common method with BPO. Radical polymerization by polarons may provide a new avenue for radical polymerizations through application of conducting polymer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 805–811  相似文献   

9.
Polypropylene (PP) is the most widely used polyolefin, due to its high mechanical strength and better processability in comparison to the others in its group. Conventional methods of polymerisation result in high molecular weights of PP. However, high molecular weights are not required for several applications. To overcome this problem controlled reduction in molecular weight of PP in presence of free radicals, in solution, is proposed. Four commonly available free radical generators viz: benzoyl peroxide (BPO), azo- iso-bis butyronitrile (AIBN), t-butyl hydroperoxide (TBHP) and dicumyl peroxide (DCP) were used to bring about reduction in molecular weight of PP. Effect of the free radical generator concentration, reaction time, reaction temperature and reaction medium (toluene, xylene and decalin) on the extent of molecular weight reduction was studied. The effect of this molecular weight reduction on mechanical, thermal, rheological and crystalline properties of the polymer was also studied. With proper selection of initiator and reaction conditions, it was possible to obtain low molecular weight branched PP with improved mechanical and thermal properties.  相似文献   

10.
The bulk polymerization of styrene was investigated with tetramethylthiuram disulfide (TMTD) as an initiator in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) at 123 °C. The polymerization proceeded in a controlled/living way; that is, the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with conversion. The molecular weights of the polymers obtained were close to the theoretical values, and the molecular weight distributions were relatively low (weight‐average molecular weight/number‐average molecular weight = 1.1–1.3). The rate of polymerization with TMTD as an initiator was faster than that with benzoyl peroxide, and the rate was independent of the initial concentration of TMTD in the presence of TEMPO. The obtained polystyrene was functionalized with ultraviolet‐light‐sensitive ? SC(S)N(CH3)2 groups, which was characterized with 1H NMR spectroscopy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 543–551, 2005  相似文献   

11.
Poly(n‐butyl acrylate) macromonomers with predetermined molecular weights (1300 < number‐average molecular weight < 23,000) and low polydispersity indices (<1.2) were synthesized from bromine‐terminated atom transfer radical polymerization polymers via end‐group substitution with acrylic acid and methacrylic acid. These macromonomers, having a high degree of end‐group functionalization (>90%), were radically homopolymerized to obtain comb polymers. A high macromonomer concentration, combined with a low radical flux, was needed to obtain a high conversion of the macromonomers and a reasonable degree of polymerization. By the traditional radical copolymerization of the hydrophobic macromonomers with the hydrophilic monomer N,N‐dimethylaminoethyl methacrylate (DMAEMA), amphiphilic comb copolymers were obtained. The conversions of the macromonomers and comonomer were almost quantitative under optimized reaction conditions. The molecular weights were high (number‐average molecular weight ≈70,000), and the molecular weight distribution was broad (polydispersity index ≈ 3.5). Kinetic measurements showed simultaneous decreases in the macromonomer and DMAEMA concentrations, indicating a relatively homogeneous composition of the comb copolymers over the whole molecular weight range. This was supported by preparative size exclusion chromatography. The copolymerization of poly(n‐butyl acrylate) macromonomers with other hydrophilic monomers such as acrylic acid or N,N‐dimethylacrylamide gave comb copolymers with multimodal molecular weight distributions in size exclusion chromatography and extremely high apparent molecular weights. Dynamic light scattering showed a heterogeneous composition consisting of small (6–9 nm) and large (23–143 nm) particles, probably micelles or other type of aggregates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3425–3439, 2003  相似文献   

12.
The rate‐accelerating effects of camphorsulfonic acid (CSA) on nitroxide‐mediated styrene miniemulsion polymerization were studied. Polymerizations were initiated with benzoyl peroxide (BPO) as an initiator and mediated with either 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) or 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyloxy (OH‐TEMPO). Although CSA has been used to accelerate the rate in bulk nitroxide‐mediated polymerizations, it has not been well studied in emulsion/miniemulsion. With dispersed systems, the effectiveness of CSA is likely to be affected by partitioning between the aqueous and organic phases. In styrene miniemulsion experiments performed over a range of conditions, the effect of adding CSA varied from negligible to significantly increasing the final conversion and molecular weight, depending on the nitroxide:BPO ratio. At a ratio of nitroxide:BPO = 1.7, the effect of CSA addition is small, whereas the final conversion and molecular weight are dramatically enhanced by CSA addition when the nitroxide:BPO ratio is 3.6. CSA is most effective in enhancing the rate and molecular weight when the initial free‐nitroxide concentration is higher. The magnitude of the rate and molecular weight enhancement was similar for TEMPO and OH‐TEMPO despite their differences in water solubility. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2828–2841, 2002  相似文献   

13.
The suitability of various peroxide initiators for a radical polymerization‐based self‐healing system is evaluated. The initiators are compared using previously established criteria in the design of ring opening metathesis polymerization‐based self‐healing systems. Benzoyl peroxide (BPO) emerges as the best performing initiator across the range of evaluation criteria. Epoxy vinyl ester resin samples prepared with microcapsules containing BPO exhibited upwards of 80% healing efficiency in preliminary tests in which a mixture of acrylic monomers and tertiary amine activator was injected into the crack plane of the sample after the initial fracture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2698–2708, 2010  相似文献   

14.
This work studies the synthesis of copolymers (MACO‐St) of castor oil maleate (MACO) and styrene (St) initiated using benzoyl peroxide (BPO) as free radical initiator through suspension polymerization. The study investigates the effects of temperature (100–140 °C), the molar ratio between styrene and MACO (2:1–4:1), BPO concentration (0.10–0.20 wt%), and water concentration (50–100 wt%) on the molecular weight distribution, thermal stability, viscosity, and biodegradability of the copolymers. Suspension polymerization allows the production of a broad range of number average molecular weight (3465–18 995 g mol?1) and molecular weight distributions with dispersions (?) ranging from 1.8 to 4.4. The reaction presents high yields of castor oil into copolymers (>90%), which displays thermal stability up to 200 °C and are highly biodegradable according to the International Organization of Standardization reference.  相似文献   

15.
Hyperbranched vinyl polymers with high degrees of branching (DBs) up to 0.43 functionalized with numerous pendent allene groups have been successfully prepared via reversible addition fragmentation chain transfer polymerization of a state‐of‐art allene‐derived asymmetrical divinyl monomer, allenemethyl methacrylate (AMMA). The gelation did not occur until high monomer conversions (above 90%), as a result of the optimized reactivity difference between the two vinyl groups in AMMA. The branched structure was confirmed by a combination of a triple‐detection size exclusion chromatography (light scattering, refractive index, and viscosity detectors) and detailed 1H NMR analyses. A two‐step mechanism is proposed for the evolution of branching according to the dependence of molecular weight and DB on monomer conversion. Controlled radical polymerization proceeds until moderate conversions, mainly producing linear polymers. Subsequent initiation and propagation on the polymerizable allene side chains as well as the coupling of macromolecular chains generate numerous branches at moderate‐to‐high monomer conversions, dramatically increasing the molecular weight of the polymer. AMMA was also explored as a new branching agent to construct poly(methyl methacrylate)‐type hyperbranched polymers by its copolymerization with methyl methacrylate. The DB can be effectively tuned by the amount of AMMA, showing a linear increase trend. The pendent allene groups in the side chains of the copolymers were further functionalized by epoxidation and thiol‐ene chemistry in satisfactory yields. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2959–2969  相似文献   

16.
In free‐radical olefin polymerizations, the polymer‐transfer reactions could lead to chain scission as well as the formation of long‐chain branches. The Monte Carlo simulation for free‐radical polymerization that involves simultaneous long‐chain branching and random scission is used to investigate detailed branched structure. The relationship between the mean‐square radius of gyration 〈s2〉 and degree of polymerization P as well as that between the branching density and P is the same for both with and without random scission reactions—at least for smaller frequencies of scission reactions. The 〈s2〉 values were larger than those calculated from the Zimm–Stockmayer (Z‐S) equation in which random distribution of branch points is assumed, and therefore, the Z‐S equation may not be applied for low‐density polyethylenes. The elution curves of size exclusion chromatography were also simulated. The molecular weight distribution (MWD) calibrated relative to standard linear polymers is much narrower than the true MWD, and high molecular weight tails are clearly underestimated. A simplified method to estimate the true MWD from the calibrated MWD data is proposed. The MWD obtained with a light scattering photometer in which the absolute weight‐average molecular weight of polymers at each retention volume is determined directly is considered a reasonable estimate of the true MWD. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2960–2968, 2001  相似文献   

17.
Poly(methyl methacrylate)s (PMMAs) of two different molecular weights having a single photochromic benzospiropyran (BSP) end‐group were synthesized by atom transfer radical polymerization (ATRP). Polymer characterization by 1H NMR and matrix‐assisted laser desorption/ionitiation time of flight‐mass spectroscopy confirms that using an ATRP initiator equipped with BSP, a near quantitative functionalization of the PMMA with the BSP was achieved. Both polymers exhibit photochroism characterized by the UV‐induced transition from BSP to benzomerocyanine (BMC) in acetonitrile. However, a strong molecular weight dependence of the thermal relaxation kinetic of the BMC was found with a significantly faster temperature‐dependent transition for the higher molecular weight polymer. Thermodynamic analysis of the process revealed a higher gain in the entropy of activation ΔS± for the transition process in the higher molecular weight polymer. This suggests an energetically unfavorable nonpolar environment of the BMC group in the higher molecular weight polymers, although a higher solvation of the BMC in the lower molecular weight polymer contributes to its stabilization. The ability of the BMC polymer end‐groups to organize was shown in metal ion‐binding experiments forming bivalently linked complexes with Co ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
An iodine‐based initiator, 2‐iodo‐2‐methylpropionitrile (CPI), was utilized for the single‐electron transfer and degenerative chain transfer mediated living radical polymerization (SET‐DTLRP) of methyl methacrylate (MMA) in the absence of ligand, at ambient temperature. The CPI‐initiated ligand‐free polymerizations manifested reasonable control over molecular weights with relatively narrow distributions (Mw/Mn ≤ 1.35). The living nature of the polymers was further confirmed by successful chain extension reaction and 1H NMR with high chain‐end fidelity (~96%). Screening of the available solvents suggested that the controllability of this polymerization was highly dependent on the kind of solvents, wherein dimethyl sulfoxide was a better solvent for a controlled molecular weight. The proposed ligand‐free SET‐DTLRP initiated by CPI was intriguing since it would dramatically decrease the concentration of Cu(0) ions both in polymerization system and resultant polymer, and provided a more economical and eco‐friendly reversible‐deactivation radical polymerization technique. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
A series of poly(butyl acrylate) samples were prepared by emulsion polymerization with a range of molecular weights and degrees of chain branching. Characterization was performed with NMR (giving the fraction of branching, ranging from approximately 0 to 7%), gel permeation chromatography, viscometry, and determination of the gel fraction. The dynamic mechanical response, that is, the frequency dependence of the storage and loss moduli G′(ω) and G″(ω) was measured from 0.02 to 200 Hz. The occurrence of a significant insoluble fraction in the sample meant that full characterization of the molecular weight distribution was not possible, and so an unambiguous separation of the dependencies of the mechanical response on the degree of long‐chain branching (LCB) and short‐chain branching (SCB) and the molecular weight could not be made; however, trends dependent on the molecular weight alone were insufficient to model the results. At high frequencies, all trends in G′(ω) and G″(ω) could be ascribed to molecular weight dependencies; at low frequencies, the effects of both the molecular weight and total degree of branching could be inferred, with more highly branched samples showing lower storage and loss moduli. Although the relative amounts of SCB and LCB could not be determined, no dynamic features attributable to LCB were observed. The low‐frequency trends could be semiquantitatively fitted with reptation and retraction theory if it was assumed that an increased degree of SCB led to an increased tube size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3335–3349, 2002  相似文献   

20.
Molybdenum chloride (MoCl5 or 1a ) and tungsten chloride (WCl6 or 1b )/phenyllithium (PhLi)/triisobutylaluminum (iBu3Al) systems were found to be quite effective for controlling the anionic polymerization of methyl methacrylate (MMA), affording high molecular weight poly(methyl methacrylate)s (PMMAs; number‐average molecular weight > 100,000) with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.25) quantitatively at 0 °C for 1 h in toluene. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) analyses of PMMAs obtained with the 1a and 1b /organolithium (RM; n‐butyllithium, PhLi)/iBu3Al systems revealed that the initiation of MMA with the systems occurred by a nucleophilic attack of H? to the monomer. In addition, the MALDI‐TOF MS analyses indicated that the presence of iBu3Al was responsible for the controlled polymerization by improving the uniformity of the polymerization with respect to initiation and termination and by preventing a backbiting reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4302–4315, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号