首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Free‐energy differences govern the equilibrium between bound and unbound states of a host and its guest molecules. The understanding of the underlying entropic and enthalpic contributions, and their complex interplay are crucial for the design of new drugs and inhibitors. In this study, molecular dynamics (MD) simulations were performed with inclusion complexes of α‐cyclodextrin (αCD) and three monosubstituted benzene derivatives to investigate host–guest binding. αCD Complexes are an ideal model system, which is experimentally and computationally well‐known. Thermodynamic integration (TI) simulations were carried out under various conditions for the free ligands in solution and bound to αCD. The two possible orientations of the ligand inside the cavity were investigated. Agreement with experimental data was only found for the more stable orientation, where the substituent resides inside the cavity. The better stability of this conformation results from stronger Van der Waals interactions and a favorable antiparallel host–guest dipole–dipole alignment. To estimate the entropic contributions, simulations were performed at three different temperatures (250, 300, and 350 K) and using positional restraints for the host. The system was found to be insensitive to both factors, due to the large and symmetric cavity of αCD, and the nondirectional nature of the host–guest interactions.  相似文献   

2.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

3.
A biodegradable diblock copolymer of poly(ϵ‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was synthesized and characterized. The inclusion compound (IC) of this copolymer with α‐cyclodextrin (α‐CD) was formed and characterized. Wide‐angle X‐ray diffraction showed that in the IC crystals α‐CDs were packed in the channel mode, which isolated and restricted the individual guest copolymer chains to highly extended conformation. Solid‐state 13C NMR techniques were used to investigate the morphology and dynamics of both the bulk and α‐CD‐IC isolated PCL‐b‐PLLA chains. The conformation of the PCL blocks isolated within the α‐CD cavities was similar to the crystalline conformation of PCL blocks in the bulk copolymer. Spin–lattice relaxation time (T1C) measurements revealed a dramatic difference in the mobilities of the semicrystalline bulk copolymer chains and those isolated in the α‐CD‐IC channels. Carbon‐observed proton spin–lattice relaxation in the rotating frame measurements (TH) showed that the bulk copolymer was phase‐separated, while, in the IC, exchange of proton magnetization through spin‐diffusion between the isolated guest polymer chains and the host α‐CD was not complete. The two‐dimensional solid‐state heteronuclear correlation (HetCor) method was also employed to monitor proton communication in these samples. Intrablock exchange of proton magnetization was observed in both the bulk semicrystalline and IC copolymer samples at short mixing times; however, even at the longest mixing time, interblock proton communication was not observed in either sample. In spite of the physical closeness between the isolated included guest chains and the host α‐CD molecules, efficient proton spin diffusion was not observed between them in the IC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2086–2096, 2005  相似文献   

4.
Novel functional polymers utilizing specific host/guest interactions were designed by introducing α‐CD host molecules into poly(ε‐lysine) chains as side groups. An interesting phase separation was observed as a result of the inclusion complexation between the polymeric host and 3‐(trimethylsilyl)propionic acid as a model guest in aqueous media. This water‐soluble polymeric host would be useful for various applications, particularly drug delivery, due to its biodegradability, low toxicity, and unique functionality represented as a complexation‐induced phase separation.  相似文献   

5.
X‐ray/neutron (X/N) diffraction data measured at very low temperature (15 K) in conjunction with ab initio theoretical calculations were used to model the crystal charge density (CD) of the host–guest complex of hydroquinone (HQ) and acetonitrile. Due to pseudosymmetry, information about the ordering of the acetonitrile molecules within the HQ cavities is present only in almost extinct, very weak diffraction data, which cannot be measured with sufficient accuracy even by using the brightest X‐ray and neutron sources available, and the CD model of the guest molecule was ultimately based on theoretical calculations. On the other hand, the CD of the HQ host structure is well determined by the experimental data. The neutron diffraction data provide hydrogen anisotropic thermal parameters and positions, which are important to obtain a reliable CD for this light‐atom‐only crystal. Atomic displacement parameters obtained independently from the X‐ray and neutron diffraction data show excellent agreement with a |ΔU| value of 0.00058 Å2 indicating outstanding data quality. The CD and especially the derived electrostatic properties clearly reveal increased polarization of the HQ molecules in the host–guest complex compared with the HQ molecules in the empty HQ apohost crystal structure. It was found that the origin of the increased polarization is inclusion of the acetonitrile molecule, whereas the change in geometry of the HQ host structure following inclusion of the guest has very little effect on the electrostatic potential. The fact that guest inclusion has a profound effect on the electrostatic potential suggests that nonpolarizable force fields may be unsuitable for molecular dynamics simulations of host–guest interaction (e.g., in protein–drug complexes), at least for polar molecules.  相似文献   

6.
The construction of supramolecular systems in aqueous media is still a great challenge owing to the limited sources of building blocks. In this study, a series of 4‐aryl‐N‐methylpyridinium derivatives have been synthesized. They formed very stable host–guest (1:2) complexes with CB[8] in water (binding constants up to 1014 M ?2) with the two guest molecules arranged in a head‐to‐tail manner and the complexes showed high thermostability, which was revealed by 1H NMR and UV/Vis spectroscopic studies, ITC, and crystallographic analysis.  相似文献   

7.
For asymmetric guest molecules in urea, the end‐groups of two adjacent guest molecules may arrange in three different ways: head–head, head–tail and tail–tail. Solid‐state 1H and 13C NMR spectroscopy is used to study the structural properties of 1‐bromodecane in urea. It is found that the end groups of the guest molecules are randomly arranged. The dynamic characteristics of 1‐bromodecane in urea inclusion compounds are probed by variable‐temperature solid‐state 2H NMR spectroscopy (line shapes, spin–spin relaxation: T2, spin‐lattice relaxation: T1Z and T1Q) between 120 K and room temperature. The comparison between the simulation and experimental data shows that the dynamic properties of the guest molecules can be described in a quantitative way using a non‐degenerate three‐site jump process in the low‐temperature phase and a degenerate three‐site jump in the high‐temperature phase, in combination with the small‐angle wobbling motion. The kinetic parameters can be derived from the simulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

9.
A novel water soluble ditopic guest, the quaternary ammonium salt of N,N'-bis(ferrocenylmethylene)-diaminobutane (1), and a known water soluble ditopic host, benzenetetracarboxylic dianhydride bridged bis(β-cyclodextrin)s (2), have been synthesized and characterized. ^1H NMR spectra and cyclic voltammogram (CV) studies revealed the host-guest interactions between them in aqueous solution. The supramolecular interaction also exists in solid state as confirmed by the studies of the solid samples, which were obtained by frozen-drying the solution sampies, using FTIR spectroscopy and differential scanning calorimetry (DSC) techniques. TEM measurement demonstrated that wire-shaped supramolecular aggregates exist in the aqueous solution of the two compounds. The lengths of the aggregates could reach micrometers.  相似文献   

10.
The structures of the inclusion compounds 4,4′‐(cyclohexane‐1,1‐diyl)diphenol–3‐chlorophenol (1/1) and 4,4′‐(cyclohexane‐1,1‐diyl)diphenol–4‐chlorophenol (1/1), both C18H20O2·C6H5ClO, are isostructural with respect to the host molecule and are stabilized by extensive host–host, host–guest and guest–host hydrogen bonding. The packing is characterized by layers of host and guest molecules. The kinetics of thermal decomposition follow the R2 contracting‐area model, kt = [1 − (1 − α)½], and yield activation energies of 105 (8) and 96 (8) kJ mol−1, respectively.  相似文献   

11.
Host–guest interactions between α‐, β‐ and γ‐cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimetry, powder X‐ray diffraction and solid‐state and solution electron paramagnetic resonance (EPR) spectroscopy. The solid‐state results demonstrated that only β‐ and γ‐cyclodextrins form 1:1 inclusion complexes, while α‐cyclodextrin does not form an inclusion complex with Cp2VCl2. The β‐ and γ‐CD–Cp2VCl2 inclusion complexes exhibited anisotropic electron‐51V (I = 7/2) hyperfine coupling constants whereas the α‐CD–Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α‐cyclodextrin (α‐CD) may be involved in weak host–guest interactions in equilibrium with free vanadocene species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Two geometrically isomeric γ‐cyclodextrin derivatives with a thymolphthalein moiety in the secondary hydroxyl side were prepared as guest‐responsive color change indicators. The isomers exhibit a pH dependence of their absorption spectra and a remarkable change in the absorbance around 610 nm upon guest addition. One of the isomers formed complexes of 2 : 1, the other of 1 : 1 stoichiometry (host/guest).  相似文献   

13.
Modern supramolecular chemistry is overwhelmingly based on non‐covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non‐carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host–guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host–guest chemistry of the pentameric macrocycle [{P(μ‐NtBu}2NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO? anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV. Our study underscores the future promise of p‐block macrocyclic chemistry.  相似文献   

14.
Novel dual molecular‐ and ion‐recognition responsive poly(N‐isopropylacrylamide‐co‐benzo‐12‐crown‐4‐acrylamide) (PNB12C4) linear copolymers with benzo‐12‐crown‐4 (B12C4) as both guest and host units are prepared. The copolymers exhibit highly selective sensitivities toward γ‐cyclodextrin (γ‐CD) and Na+. The presence of γ‐CD induces the lower critical solution temperature (LCST) of PNB12C4 copolymer to shift to a higher value due to the formation of 1:1 γ‐CD/B12C4 host‐guest inclusion complexes, while Na+ causes a negative shift in LCST due to the formation of 2:1 “sandwich” B12C4/Na+ host‐guest complexes. Regardless of the complexation order, when γ‐CD and Na+ coexist with PNB12C4, competitive complexation actions of B12C4 as both guest and host units toward γ‐CD and Na+ finally form equilibrium 2:2:1 γ‐CD/B12C4/Na+ composite complexes, and the final LCST values of PNB12C4 copolymer reach almost the same level. The results provide valuable guidance for designing and applying PNB12C4‐based smart materials in various applications.

  相似文献   


15.
Methylated β‐cyclodextrin (Me‐β‐CD) was used to complex a free‐radical photoinitiator, 2‐hydroxy‐2‐methyl‐1‐phenylpropan‐1‐one ( 1 ), yielding the water‐soluble 1 : 1 host/guest complex 1 a . The structure of complex 1 a was verified by means of IR, UV/vis and 1H NMR spectroscopy. The influence of Me‐β‐CD as the host on the photopolymerization kinetics of N‐isopropylacrylamide was studied. Compared to the photopolymerization carried out under nearly identical conditions but without cyclodextrin, an increase in the polymerization rate was registered in the presence of complex 1 a .  相似文献   

16.
Coordination polymers are constructed from two basic components, namely metal ions, or metal‐ion clusters, and bridging organic ligands. Their structures may also contain other auxiliary components, such as blocking ligands, counter‐ions and nonbonding guest or template molecules. The choice or design of a suitable linker is essential. The new title zinc(II) coordination polymer, [Zn(C5H5NO3P)Cl]n , has been hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction and vibrational spectroscopy (FT–IR and FT–Raman). Additionally, computational methods have been applied to derive quantitative information about interactions present in the solid state. The compound crystallizes in the monoclinic space group C 2/c . The four‐coordinated ZnII cation is in a distorted tetrahedral environment, formed by three phosphonate O atoms from three different (pyridin‐1‐ium‐3‐yl)phosphonate ligands and one chloride anion. The ZnII ions are extended by phosphonate ligands to generate a ladder chain along the [001] direction. Adjacent ladders are held together via N—H…O hydrogen bonds and offset face‐to‐face π–π stacking interactions, forming a three‐dimensional supramolecular network with channels. As calculated, the interaction energy between the neighbouring ladders is −115.2 kJ mol−1. In turn, the cohesive energy evaluated per asymmetric unit‐equivalent fragment of a polymeric chain in the crystal structure is −205.4 kJ mol−1. This latter value reflects the numerous hydrogen bonds stabilizing the three‐dimensional packing of the coordination chains.  相似文献   

17.
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8‐bis(4‐aminophenyl)anthracene (1,8‐BAPA) with organic solvents. X‐ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8‐BAPA and eight guest molecules including both non‐polar (benzene) and polar guests (N,N‐dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature‐dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.  相似文献   

18.
The effect of molecular weight of poly(ε‐caprolactone) (PCL) on the formation and stability of inclusion complexes (ICs) between α‐cyclodextrin (α‐CD) and PCL was investigated by FTIR, WAXD, and DSC measurements. ICs between α‐CD and PCLs with a wide range of number‐average molecular weight, Mn = 1.21 × 104 – 1.79 × 105, were prepared by mixing the aqueous solution of CD and acetone solution of PCL followed by stirring at 60 °C for 1h and at the room temperature for 1 day. FTIR, WAXD, and DSC measurement showed the PCL chains were included into the α‐CD cavity, and the crystallization of PCL was suppressed in the α‐CD cavity. Stoichiometry and yield of each IC varied with the molecular weight of guest PCL, and the effect of IC formation on the crystallization behaviour of guest polymer decreased with the increase of molecular weight of guest polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1433–1440, 2005  相似文献   

19.
Binding constants for the enantiomers of modafinil with the negatively charged chiral selector sulfated‐β‐CD (S‐β‐CD) using CE technique is presented. The calculations of the binding constants employing three different linearization plots (double reciprocal, X‐reciprocal and Y‐reciprocal) were performed from the electrophoretic mobility values of modafinil enantiomers at different concentrations of S‐β‐CD in the BGE. The highest inclusion affinity of the modafinil enantiomers were observed for the S‐enantiomer–S‐β‐CD complex, in agreement with the computational calculations performed previously. Binding constants for each enantiomer–S‐β‐CD complex at different temperatures, as well as thermodynamic parameters for binding, were calculated. Host–guest binding constants using the double reciprocal fit showed better linearity (r2>0.99) at all temperatures studied (15–30°C) and compared with the other two fit methods. The linear van't Hoff (15–30°C) plot obtained indicated that the thermodynamic parameters of complexation were temperature dependent for the enantiomers.  相似文献   

20.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号