首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, agar hydrogel was selected as diffusion medium and template to control the biomimetic mineralization of calcium carbonate (CaCO3). Due to three dimensional network structures and abundant functional groups (such as, hydroxyl groups), Ca2+ ions were uniformly distributed in the network and electrostatically attracted. The diffusion speed and range of CO32? ions were mediated by the concentration of hydrogel medium. Under the synergistic effect of Mg2+ ions, the crystal CaCO3 was induced by gas phase diffusion method in the hydrogel system. The results showed that the concentrations of Mg2+ ions and agar hydrogel had no obvious effect on the calcite phase of CaCO3, but the morphologies and sizes changed with concentrations of medium and Mg2+ ions. Attribute to template effect, the crystallization behavior and growth rate of CaCO3 crystals were regulated. Since Mg2+ ions were easily adsorbed on the surfaces of unit cell, the unique structure of CaCO3 was precisely controlled. This study provides a useful reference and inspiration for the understandings of the contributions of ion supply rate in bio-mineralization and hydrogel medium in biomimetic mineralization.  相似文献   

2.
《先进技术聚合物》2018,29(6):1815-1825
Ricinoleic acid (RA) has potential to promote wound healing because of its analgesic and anti‐inflammatory properties. This study investigates the synthesis and characterization of RA liposomes infused in a hydrogel for topical application. Lecithin liposomes containing RA were prepared and incorporated into a chitosan solution and were subsequently cross‐linked with di‐aldehyde β‐cyclodextrin (Di‐β‐CD). Chitosan/Di‐β‐CD concentrations and reaction temperatures were varied to alter gelation time, water content, and mechanical properties of the hydrogel in an effort to obtain a wide range of RA release profiles. Hydrogel cross‐linking was confirmed by spectroscopy, and liposome and carrier hydrogel morphology via microscopy. Chitosan, Di‐β‐CD, and liposome concentrations within the formulation affected the extent of matrix swelling, mechanical strength, and pore and overall morphology. Higher cross‐linking density of the hydrogel led to lower water uptake and slower release rate of RA. Optimized formulations resulted in a burst release of RA followed by a steady release pattern accounting for 80% of the encapsulated RA over a period of 48 hours. However, RA concentrations above 0.1 mg/mL were found to be cytotoxic to fibroblast cultures in vitro because of the oily nature of RA. These formulations promoted wound healing when used to treat full thickness skin wounds (2 cm2) in Wister male rats. The wound contraction rates were significantly higher compared to a commercially available topical cream after a time period of 21 days. Histopathological analysis of the RA‐liposomal chitosan hydrogel group showed that the epidermis, dermis, and subcutaneous skin layers displayed an accelerated yet normal healing compared to control group.  相似文献   

3.
Bacterial infections of the wound surface can be painful for patients, and traditional dressings do not effectively address this problem. In this study, an antimicrobial wound dressing is prepared using a novel antimicrobial peptide, HX-12C. This hydrogel system is based on the natural biomaterials sodium alginate and gelatin, utilizing calcium carbonate as a source of Ca2+, and ionic cross-linking is facilitated by lowering the solution pH. The resulting sodium alginate/gelatin HX-12C-loaded hydrogel (CaAGEAM) has good mechanical and adhesion properties, biocompatibility and in vitro degradability. Its extraordinary antibacterial efficacy (>98%) is verified by an antibacterial experiment. More importantly, in vivo experiments further demonstrate its healing-promotion effect, with a 95% wound healing rate by day 9. Tissue staining demonstrates that the hydrogel containing antimicrobial peptides is effective in suppressing inflammation. The dressing promotes wound healing by stimulating the deposition of skin appendages and collagen. The results of this study suggest that composite hydrogels containing antimicrobial peptides are a promising new type of dressing to promote the healing of infected wounds.  相似文献   

4.
To develop an antimicrobial membrane for wound healing, the blended k-carrageenan (KC)/carboxymethyl chitosan (CMCH) membranes were fabricated through a freeze-drying process together with a dual-ion (Cu2+and K+ or Cu2+and Ca2+) crosslinking approach. The dual-ion crosslinking by Cu2+and K+ could not only make the membranes compact but could also improve the uptake capacity and mechanical properties of the fabricated membranes. The maximum tensile stress of membranes reached up to 43 MPa and the highest swelling ratio was around 5500%, exhibiting robust moisture retention property. The CMCH and Cu2+ in blended membranes provided a good antimicrobial property against gram-positive and gram-negative bacteria. Moreover, the fabricated membranes showed good cytocompatibility. These results indicated the fabricated KC/CMCH membranes with dual-ion by Cu2+ and K+ have favorable properties and have a great potential for application in wound healing.  相似文献   

5.
The present work investigates Ca2+‐crosslinked nanofibrillated cellulose hydrogels as potential hemostatic wound dressings by studying core interactions between the materials and a central component of wounds and wound healing—the blood. Hydrogels of wood‐derived anionic nanofibrillated cellulose (NFC) and NFC hydrogels that incorporate kaolin or collagen are studied in an in vitro whole blood model and with platelet‐free plasma assays. The evaluation of thrombin and factor XIIa formation, platelet reduction, and the release of activated complement system proteins, shows that the NFC hydrogel efficiently triggered blood coagulation, with a rapid onset of clot formation, while displaying basal complement system activation. By using the NFC hydrogel as a carrier of kaolin, the onset of hemostasis is further boosted, while the NFC hydrogel containing collagen exhibits blood activating properties comparable to the anionic NFC hydrogel. The herein studied NFC hydrogels demonstrate great potential for being part of advanced wound healing dressings that can be tuned to target certain wounds (e.g., strongly hemorrhaging ones) or specific phases of the wound healing process for optimal wound management.  相似文献   

6.
The ability to create artificial thick tissues is a major tissue engineering problem,requiring the formation of a suitable vascular supply.In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel.GYIGSRG(NH 2-Gly-Tyr-IleGly-Ser-Arg-Gly-COOH,GG) has been conjugated to sodium alginate(ALG) to synthesize a biological active biomaterial ALG-GG.The product was characterized by 1 H NMR,FT-IR and elemental analysis.A series of CaCO 3 /ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-lactone/calcium carbonate(GDL/CaCO 3) in different molar ratios.The mechanical strength and swelling ratio of the composite hydrogels were studied.The results revealed that both of them can be regulated under different preparation conditions.Then,CaCO 3 /ALG-GG composite hydrogel was implanted in vivo to study the ability to induce angiogenesis.The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group,and it may be valuable in the development of thick tissue engineering scaffold.  相似文献   

7.
Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.  相似文献   

8.
《中国化学快报》2023,34(4):108071
Biopolymer based hydrogels are highly adaptable, compatible and have shown great potential in biological tissues in biomedical applications. However, the development of bio-based hydrogels with high strength and effective antibacterial activity remains challenging. Herein, a series of Vanillin-cross-linked chitosan nanocomposite hydrogel interfacially reinforced by g-C3N4 nanosheet carrying starch-caped Ag NPs were prepared for wound healing applications. The study aimed to enhance the strength, sustainability and control release ability of the fabricated membranes. Starch-caped silver nanoparticles were incorporated to enhance the anti-bacterial activities The fabricated membranes were assessed using various characterization techniques such as FT-IR, XRD, SEM, mechanical testing, Gel fraction and porosity alongside traditional biomedical tests i.e., swelling percentage, moisture retention ability, water vapor transmission rate, oxygen permeability, anti-bacterial activity and drug-release of the fabricated membranes. The mechanical strength reached as high as 25.9 ± 0.24 MPa for the best optimized sample. The moisture retention lied between 87–89%, gel fraction 80–85%, and water vapor transmission up to 104 ± 1.9 g/m2h showing great properties of the fabricated membrane. Swelling percentage surged to 225% for blood while porosity fluctuated between 44% ± 2.1% and 52.5% ± 2.3%. Oxygen permeability reached up to 8.02 mg/L showing the breathable nature of fabricated membranes. The nanocomposite membrane shown excellent antibacterial activity for both gram-positive and gram-negative bacteria with a maximum zone of inhibition 30 ± 0.25 mm and 36.23 ± 0.23 mm respectively. Furthermore, nanoparticles maintained sustainable release following non-fickian diffusion. The fabricated membrane demonstrated the application of inorganic filler to enhance the strength of biopolymer hydrogel with superior properties. These results envisage the potential of synthesized membrane to be used as wound dressing, artificial skin and load-bearing scaffolds.  相似文献   

9.
《中国化学快报》2023,34(10):108262
To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel (DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol) (PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum (XG) impregnated with Fe3+ interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength (compressive modulus and tensile modulus can reach up to 0.62 MPa and 0.079 MPa, respectively), conductivity (conductivity values ranging from 9 × 10−4 S/cm to 1 × 10−3 S/cm) and bacterial inhibition properties (up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe3+ on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo (up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.  相似文献   

10.
The objective of this work is to investigate the effects of pH and ionic strength on the adsorption capacity for fulvic acid (FA) by chitosan hydrogel beads. The results indicated that the sorption amount increased with decreasing pH and increasing ionic strength concentration. The sorption isotherms were well described by using non-linear Langmuir, Freundlich and Redliche–Peterson equation. The adsorption kinetics of FA onto chitosan hydrogel beads could be described by pseudo-second-order rate model. The extent of FA removal in the presence of other ions decreases in the order Ca2+ > Mg2+ > Na+ ≈ K+ and Cl > NO3 > CO32−. FTIR along with XPS analyses revealed the amine groups on the beads were involved in the sorption of FA and the organic complex between the protonated amino groups and FA was formed after FA uptake. Sorption mechanisms including electrostatic interaction and surface complexation were found to be involved in the complex sorption of FA on the chitosan hydrogel beads.  相似文献   

11.
An amphiphilic derivative of carboxymethylchitosan (CMCS), (2-hydroxyl-3-butoxyl)propyl-CMCS (HBP-CMCS), was used as an organic additive in the precipitation process of calcium carbonate (CaCO3). HBP-CMCS molecules can interact with calcium ions, the functional groups of which act as active sites for the nucleation and crystallization of CaCO3. Simultaneously, HBP-CMCS molecule also functionalizes as a colloidal stabilizer to prohibit the sedimentation of the grown CaCO3 crystals, depending upon the molar ratio of the initial Ca2+ ions to the repeat units of HBP-CMCS molecules. The combination investigations of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy on the precipitated CaCO3 crystals proved that concentrations of HBP-CMCS and Ca2+ exert great influence on the crystallization habit of CaCO3, such as the nucleation, growth, morphology, crystal form, etc. The formation of the peanut-shaped CaCO3 particles suggests the template effect of HBP-CMCS molecules on the aggregation behavior of CaCO3 nanocrystals.  相似文献   

12.
Accelerating the coagulation process and preventing wound infection are major challenges in the wound care process. Therefore, new multifunctional wound dressings with procoagulant, antibacterial, and antioxidant properties have enormous potential for clinical application. In this work, biodegradable hydrogels containing herbal extracts are prepared for wound dressings. First, the active ingredients are extracted from Amaranthus spinosus (A. spinosus) and Rubia cordifolia (R. cordifolia) and added to the hydrogels prepared from microcrystalline cellulose (MCC), carrageenan, and sodium alginate. Then the composite hydrogels are air-dried to obtain the wound dressings. The wound dressings prepared in this work have good biocompatibility and moisture retention. The mechanical properties of the wound dressings are further improved with the addition of MCC. Besides, the wound dressings have excellent procoagulant, antibacterial, and antioxidant properties due to the presence of R. cordifolia extract. Overall, the most effective group of wound dressings with different ingredient formulations reduces clotting time by 75% and largely inhibits bacterial growth. The wound dressings perform well in the animal wound models to promote wound healing. These results indicate that the hydrogel wound dressings prepared in this work have great potential for medical applications.  相似文献   

13.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

14.
As a new material with excellent mechanical properties and good stability, slide-ring gels have attracted attention and research. However, they cannot be widely used due to their relatively complicated synthesis. Herein, we use 6-acrylamidomethylether-modified α-cyclodextrin (αCDAAmMe) and PEG20000 diacrylate (PEG20000DA) to construct a polypseudorotaxane. Then, the polypseudorotaxane reacts with acrylamide via a photo-initiated polymerization in situ to conveniently obtain a slide-ring hydrogel with good elastic property and high recovery property. The hydrogel can be easily stretched to 22.5 times of its original length but recovered rapidly and almost reversibly. These results enable the application of hydrogel to make an intrinsically stretchable and compressible supercapacitor after doping ions and the adhesion of commercially available carbon nanotube (CNT) paper as electrodes, giving the ionic conductivity of 17.0 mS cm−1 (comparable to that of the commercial PVA/H3PO4 electrolyte) and the capacitance of 0.87 μF cm−2 (at the scan speed of 100 mV s−1), and its capacitance can be further enhanced under stretching.  相似文献   

15.
Anti-infection and neovascularization at the wound site are two vital factors that accelerate diabetic wound healing. However, for a wound healing dressing, the two functions need to work at different sites(inner and outer), giving big challenges for dressing design. In this study, we fabricated a novel sodium alginate/chitosan(SA/CS) Janus hydrogel dressing by the assembly of SA hydrogel loaded with silver nanoparticles(Ag NPs) and CS hydrogel impregnated with L-arginine loaded sodium alginate ...  相似文献   

16.
Cheng‐Li YAO 《中国化学》2008,26(6):1075-1078
The biliary protein (BP) was isolated from pig bile by gel filtration. The interaction between Ca2+ and protein was measured by fluorescence spectra. The result showed that there was a strong coordination between biliary protein and Ca2+. The CaCO3 crystals obtained in systems with and without BP were characterized by scanning electron microscopy, Fourier transform infrared spectrography and powder X‐ray diffractometry. The possible formation mechanism of CaCO3 in biliary protein solution was discussed.  相似文献   

17.
CaCO3‐saturated saline waters at pH values below 8.5 are characterized by two stationary equilibrium states: reversible chemical calcification/decalcification associated with acid dissociation, Ca2++HCO3??CaCO3+H+; and reversible static physical precipitation/dissolution, Ca2++CO32??CaCO3. The former reversible reaction was determined using a strong base and acid titration. The saturation state described by the pH/PCO2‐independent solubility product, [Ca2+][CO32?], may not be observed at pH below 8.5 because [Ca2+][CO32?]/([Ca2+][HCO3?]) ?1. Since proton transfer dynamics controls all reversible acid dissociation reactions in saline waters, the concentrations of calcium ion and dissolved inorganic carbon (DIC) were expressed as a function of dual variables, pH and PCO2. The negative impact of ocean acidification on marine calcifying organisms was confirmed by applying the experimental culture data of each PCO2/pH‐dependent coral polyp skeleton weight (Wskel) to the proton transfer idea. The skeleton formation of each coral polyp was performed in microspaces beneath its aboral ectoderm. This resulted in a decalcification of 14 weight %, a normalized CaCO3 saturation state Λ of 1.3 at PCO2 ≈400 ppm and pH ≈8.0, and serious decalcification of 45 % and Λ 2.5 at PCO2 ≈1000 ppm and pH ≈7.8.  相似文献   

18.
Ca2+, a ubiquitous but nuanced modulator of cellular physiology, is meticulously controlled intracellularly. However, intracellular Ca2+ regulation, such as mitochondrial Ca2+ buffering capacity, can be disrupted by 1O2. Thus, the intracellular Ca2+ overload, which is recognized as one of the important cell pro‐death factors, can be logically achieved by the synergism of 1O2 with exogenous Ca2+ delivery. Reported herein is a nanoscale covalent organic framework (NCOF)‐based nanoagent, namely CaCO3@COF‐BODIPY‐2I@GAG ( 4 ), which is embedded with CaCO3 nanoparticle (NP) and surface‐decorated with BODIPY‐2I as photosensitizer (PS) and glycosaminoglycan (GAG) targeting agent for CD44 receptors on digestive tract tumor cells. Under illumination, the light‐triggered 1O2 not only kills the tumor cells directly, but also leads to their mitochondrial dysfunction and Ca2+ overload. An enhanced antitumor efficiency is achieved via photodynamic therapy (PDT) and Ca2+ overload synergistic therapy.  相似文献   

19.
The objective of this work was to synthesize a sulfonated polymethylsiloxane (S-PMS) by hydrosilylation and sulfonation reactions and to investigate their effect on the growth of CaCO3 crystals using a gas diffusion method as a function of concentration, pH, and time. The result of IR and NMR shows good agreement with all proposed structures. Scanning electron microscopy images of CaCO3 showed small well-defined calcite-forming short piles (ca 5 μm) and elongated calcite (ca 20 μm) crystals. The morphology of the resultant CaCO3 crystals reflects the electrostatic interaction of sulfonate moieties and Ca2+ modulated by S-PMS adsorbed onto the CaCO3 surface. X-ray diffraction confirmed the crystalline calcite polymorph. Energy dispersive spectroscopy of CaCO3 crystals determined the presence of Si atoms from S-PMS. The use of PMS chemistry as an organic additive for the production of CaCO3 particles is a viable approach for studying the biomineralization and could be useful for the design of novel materials with desirable shape and properties.  相似文献   

20.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号