首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of several novel 3,5‐substituted‐indole‐2‐carboxamides is described. A 5‐nitro‐indole‐2‐carboxylate was elaborated to the 3‐benzhydryl ester, N‐substituted ester, and carboxylic acid intermedi ates, followed by conversion to the amide and then reduction of the 5‐nitro group to the amine. Indole‐2‐carboxamides with 3‐benzyl and 3‐phenyl substituents were prepared in four steps from either a 3‐bromo indole ester using the Suzuki reaction or from a 3‐keto substituted indole ester. N‐Alkylation of ethyl indole‐2‐carboxylate, followed by amidation and catalytic addition of 9‐hydroxyxanthene gave a 3‐xanthyl‐indole‐2‐carboxamide analog and a spiropyrrolo indole as a side product.  相似文献   

2.
The synthesis of new pyrazolo[4,3‐c]β‐carbolines ( 8a,b ) is achieved by condensation of the appropriate aldehyde with 3‐(4‐amino‐1,3‐dimethylpyrazol‐5‐yl)indole ( 4 ) under Pictet‐Spengler reaction conditions. Regioselective cyclization occurred at the usual indole C‐2 position as evidenced from the 1H‐and 13C nmr spectra of 8a,b which lack the pyrrolic H‐2 signal, present in 4 (δ 7.26, 1H, d, Jch‐NH = 2‐5 Hz).  相似文献   

3.
The synthesis of novel 1‐(1H‐tetrazol‐5‐yl)‐10‐chloro‐1,2,3,4‐tetrahydropyrazino[1,2‐a] indole derivatives starting from the initially prepared 1‐(2‐bromoethyl)‐3‐chloro‐1H‐indole‐2‐carbaldehyde is described. A variety of likely biologically relevant pyrazino[1,2‐a] indole‐based 1,5‐disubstituted tetrazoles was obtained in moderate to high yields via an Ugi‐azide reaction. These reactions presumably proceed by the imine formation, intramolecular cyclization to iminium ion, and nucleophilic addition tandem reactions, respectively.  相似文献   

4.
An efficient, stereocontrolled total synthesis of the complex indole‐diterpene alkaloid (?)‐21‐isopentenylpaxilline ( 1 ) has been achieved. Key elements of the synthesis include the stereocontrolled construction of the advanced eastern hemisphere (?)‐ 68 , involving a highly efficient union of the eastern and western fragments (?)‐ 68 and 5 exploiting our 2‐substituted indole synthesis, application of the Negishi π cycloalkylation tactic as a new, potentially general protocol for the construction of ring C, and the fragmentation of a β,γ‐epoxy ketone to introduce the tertiary OH group at C(13) in the indole diterpene skeleton.  相似文献   

5.
2‐Methyl‐4‐(trifluoromethyl)‐1H‐indole‐5‐carbonitrile is a key intermediate in the synthesis of selective androgen receptor modulators discovered in these laboratories. A practical and convergent synthesis of the title compound starting from 4‐nitro‐3‐(trifluoromethyl)phenol and tert‐butyl acetoacetate was developed, including a telescoped procedure for synthesis (without isolation) and Nenitzescu reaction of 2‐trifluoromethyl‐1,4‐benzoquinone. Conversion of the known Nenitzescu indole product to a novel triflate intermediate followed by palladium‐catalyzed cyanation afforded a penultimate carbonitrile. Removal of the C‐3 tert‐butyl ester group on the indole through a decarboxylative pathway completed the synthesis of the title compound in six steps (27% overall yield) from 4‐nitro‐3‐(trifluoromethyl)phenol (five steps, 37% overall yield from tert‐butyl acetoacetate). J. Heterocyclic Chem., (2011).  相似文献   

6.
In crystals of the title compound, C23H23N5O3S, the indole system is planar and the phenyl ring of the phenylsulfonyl group makes a dihedral angle with the best plane of the indole system of 77.18 (4)°. The olefinic bond connecting the azabicyclic and indole systems has Z geometry. The geometry adopted by the C=O bond with respect to the N—N bond is trans. The O atom of the carbonyl group of each molecule is hydrogen bonded to the hydrazidic H atom of an adjacent molecule to form an eight‐membered‐ring dimeric structure.  相似文献   

7.
In the title compound, C20H16N2O5, both of the 1‐acetyl­isatin (1‐acetyl‐1H‐indole‐2,3‐dione) moieties are planar and form a dihedral angle of 74.1 (1)°. Weak intermolecular hydrogen bonds and C—H?π interactions stabilize the packing in the crystal.  相似文献   

8.
In the title compound, C24H20Br2N2O4S, the indole ring system is planar and the S atom has a distorted tetrahedral configuration. The sulfonyl‐bound phenyl ring is orthogonal to the indole ring system and the conformation of the phenyl­sulfonyl substituent with respect to the indole moiety is influenced by intramolecular C—H⃛O hydrogen bonds involving the two sulfonyl O atoms. The mean plane through the acetyl­amido group makes a dihedral angle of 57.0 (1)° with the phenyl ring of the benzyl moiety. In the crystal, glide‐related mol­ecules are linked together by N—H⃛O hydrogen bonds and C—H⃛π interactions to form molecular chains, which extend through the crystal. Inversion‐related chains are interlinked by C—H⃛π interactions to form molecular layers parallel to the bc plane. These layers are interconnected through π–π interactions involving the five‐ and six‐membered rings of the indole moiety.  相似文献   

9.
In the title compound, C18H13BrClNO3, the heterocyclic ring of the indole is distorted from planarity towards an envelope conformation. The orientations of the indole, oxetane, chloro and bromo­phenyl substituents are conditioned by the sp3 states of the spiro‐junction and the Cl‐attached C atoms.  相似文献   

10.
In the title compound, 2‐[(methylphenylamino)methyl]‐1‐(phenylsulfonyl)indole, C22H20N2O2S, the indole system is not strictly planar and the dihedral angle between the fused rings is 2.7 (1)°. The angles around the S atom of the sulfonyl substituent deviate significantly from the ideal value for tetrahedral geometry. The pyramidalization at the indole N atom is very small. Of the two C—H?O interactions, one influences the orientation of indole with respect to the sulfonyl group and the other determines the orientation of the phenyl bound to sulfonyl. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 89.6 (1)° with the best plane of the indole. The molecular packing is stabilized by C—H?π and C—H?O hydrogen bonds.  相似文献   

11.
4‐Chloro‐2,3,3,7‐tetramethyl‐3H‐indole (an indolenine) was produced by the reaction of 5‐chloro‐2‐methylphenylhydrazine hydrochloride with 3‐methylbutan‐2‐one via Fischer reaction. Exposure of the indolenine to the Vilsmeier reagent at 50°C produced a β‐diformyl compound, 2‐(4‐chloro‐1,3‐dihydro‐3,3,7‐trimethyl‐2H‐indol‐2‐ylidene)propanedial. This dialdehyde was reacted with arylhydrazines, acetamidinium chloride, urea, thiourea, guanidinium chloride, and cyanoacetamide to give various 5‐membered and 6‐membered heterocyclic products, each carrying a 4‐chloro‐3,3,7‐trimethyl‐3H‐indol‐2‐yl unit as a substituent, in excellent yields.  相似文献   

12.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

13.
A simple and convenient procedure for the preparation of some unknown 2,3‐disubstituted 5‐iodo‐1H‐pyrrolo[2,3‐b ]pyridines from readily available starting materials by Fischer indole cyclization in polyphosphoric acid is described. The present methodology provides an alternative synthetic approach to the synthesis of 5‐iodo‐7‐azaindole scaffold. All synthesized compounds were characterized by IR, MS, 1H and 13C NMR, and elemental analysis.  相似文献   

14.
The molecule of the title compound, C19H27NO3, is essentially planar, with all non‐H atoms within 0.2 Å of the nine‐membered indole plane, except for the three tert‐butyl C atoms. The C5 pentyl chain is in an extended conformation, with three torsion angles of 179.95 (13), 179.65 (13) and −178.95 (15)° (the latter two angles include the C atoms of the C5 chain only). Three intramolecular C—H⋯Ozdbnd;C contacts are present (C⋯O < 3.05 Å and C—H⋯O > 115°), and an intermolecular C—H⋯Ozdbnd;C contact and π–π stacking complete the intermolecular interactions.  相似文献   

15.
Preparation of the 5‐substituted azepino[3,4‐b]indole core structure can be realised through a catalytic Heck reaction. The scope and limitations of this methodology are reported. The reactivity of di‐tert‐butyl 5‐ethoxycarbonylmethylene‐1,3,4,5‐tetrahydro‐1‐oxoazepino[3,4‐b]indole‐2,10‐dicarboxylate (1) was investigated in order to prepare the indole analogue of hymenialdisine and derivatives.  相似文献   

16.
Free‐standing poly(5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole) (PETI) was electrochemically obtained from 5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole (ETI) prepared by Stille coupling reaction of 5,7‐dibromoindole and 3,4‐ethylenedioxythiophene. For comparison, poly(5,7‐bis(2‐thiophene)‐indole) was also electrosynthesized from 5,7‐bis(2‐thiophene)‐indole (BTI) which was prepared from the 5,7‐dibromoindole and thiophene. Characterizations of ETI and BTI were performed by cyclic voltammetry, scanning electron microscopy, 1H NMR, and 13C NMR spectroscopy. Spectroelectrochemical studies showed PETI had better electrochromic properties and showed two different colors (brown and blue‐violet) under various potentials with better maximum contrast (ΔT%) and coloration efficiency (CE). An electrochromic device (ECD) based on PETI and poly(3,4‐ethylenedioxythiophene) (PEDOT) was also constructed and characterized. This ECD had fast response time, high CE, better optical memory, and long‐term stability. These results indicated that PETI had potential applications for ECD. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2356–2364  相似文献   

17.
The title compound, Na+·C9H7N4O5S·2H2O, presents a Z configuration around the imine C=N bond and an E configuration around the C(O)NH2 group, stabilized by two intra­molecular hydrogen bonds. The packing is governed by ionic inter­actions between the Na+ cation and the surrounding O atoms. The ionic unit, Na+ and 2‐oxo‐3‐semicarbazono‐2,3‐dihydro‐1H‐indole‐5‐sulfonate, forms layers extending in the bc plane. The layers are connected by hydrogen bonds involving the water mol­ecules.  相似文献   

18.
The first chemical syntheses of complex, bis‐Strychnos alkaloids (?)‐sungucine ( 1 ), (?)‐isosungucine ( 2 ), and (?)‐strychnogucine B ( 3 ) from (?)‐strychnine ( 4 ) is reported. Key steps included (1) the Polonovski–Potier activation of strychnine N‐oxide; (2) a biomimetic Mannich coupling to forge the signature C23?C5′ bond that joins two monoterpene indole monomers; and (3) a sequential HBr/NaBH3CN‐mediated reduction to fashion the ethylidene moieties in 1 – 3 . DFT calculations were employed to rationalize the regiochemical course of reactions involving strychnine congeners.  相似文献   

19.
Triphenylphosphine (TPP) has been utilized as a novel and efficient catalyst for the Knoevenagel condensation of indole‐3‐carboxaldehydes 1(a–e) , 1‐methyl‐1H‐indole‐3‐carboxaldehydes 4(a–e) , and 1‐ethyl‐1H‐indole‐3‐carboxaldehydes 6(a–e) with the active methylene compound, that is, meldrum's acid ( 2 ), to afford substituted derivatives 5‐((1H‐indol‐3‐yl) methylene)‐2,2‐dimethyl‐1,3‐dioxane‐4,6‐dione 3(a–e) , 2,2‐dimethyl‐5‐((1‐methyl‐1H‐indol‐3‐yl)methylene)‐1,3‐dioxane‐4,6‐dione 5(a–e) , and 2,2‐dimethyl‐5‐((1‐ethyl‐1H‐indol‐3‐yl)methylene)‐1,3‐dioxane‐4,6‐dione 7(a–e) , respectively, in ethanol medium at RT just within 1 h in excellent yields. The products 3(a–e) were reacted independently with alkylating agents, that is, DMS and DES in the presence of PEG‐600 as an efficient and green solvent, to afford the corresponding N‐substituted methyl and ethyl derivatives 5(a–e) and 7(a–e) , respectively. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:41–48, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20750  相似文献   

20.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号