首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on recent developments in generalized Born (GB) theory that employ rapid volume integration schemes (M. S. Lee, F. R. Salabury, Jr., and C. L. Brooks III, J Chem Phys 2002, 116, 10606) we have recast the calculation of the self-electrostatic solvation energy to utilize a simple smoothing function at the dielectric boundary. The present GB model is formulated in this manner to provide consistency with the Poisson-Boltzmann (PB) theory previously developed to yield numerically stable electrostatic solvation forces based on finite-difference methods (W. Im, D. Beglov, and B. Roux, Comp Phys Commun 1998, 111, 59). Our comparisons show that the present GB model is indeed an efficient and accurate approach to reproduce corresponding PB solvation energies and forces. With only two adjustable parameters--a(0) to modulate the Coulomb field term, and a(1) to include a correction term beyond Coulomb field--the PB solvation energies are reproduced within 1% error on average for a variety of proteins. Detailed analysis shows that the PB energy can be reproduced within 2% absolute error with a confidence of about 95%. In addition, the solvent-exposed surface area of a biomolecule, as commonly used in calculations of the nonpolar solvation energy, can be calculated accurately and efficiently using the simple smoothing function and the volume integration method. Our implicit solvent GB calculations are about 4.5 times slower than the corresponding vacuum calculations. Using the simple smoothing function makes the present GB model roughly three times faster than GB models, which attempt to mimic the Lee-Richards molecular volume.  相似文献   

2.
The Poisson-Boltzmann (PB) equation is widely used for modeling electrostatic effects and solvation for macromolecules. The generalized Born (GB) model has been developed to mimic PB results at substantial lower computational cost. Here, we report an analytical GB method that reproduces PB results with high accuracy. The analytical approach builds on previous work of Gallicchio and Levy (J. Comput. Chem. 2004, 25, 479), and incorporates an improvement, proposed by Grycuk (J. Chem. Phys. 2003, 119, 4817), of the Coulomb-field approximation used in most GB methods. Tested against PB results, our GB method has an average unsigned relative error of only 0.6% for a representative set of 55 proteins and of 0.4% and 0.3%, respectively, for folded and unfolded conformations of cytochrome b562 sampled in molecular dynamics simulations. The dependencies of the electrostatic solvation free energy on solute and solvent dielectric constants and on salt concentration are fully accounted for in our method.  相似文献   

3.
4.
In this paper we are investigating the effect of the dielectric environment on atomic Born radii used in generalized Born (GB) methods. Motivated by the Kirkwood expression for the reaction field of a single off-center charge in a spherical cavity, we are proposing extended formalisms for the calculation of Born radii as a function of external and internal dielectric constants. We demonstrate that reaction field energies calculated from environmentally dependent Born radii lead to much improved agreement with Poisson-Boltzmann solutions for low dielectric external environments, such as biological membranes or organic solvent, compared to previous methods where the calculation of Born radii does not depend on the environment. We also examine how this new approach can be applied for the calculation of transfer free energies from vacuum to a given external dielectric for a system with an internal dielectric larger than one. This has not been possible with standard GB theory but is relevant when scoring minimized or average structures with implicit solvent.  相似文献   

5.
Four implicit membrane models [IMM1, generalized Born (GB)‐surface area‐implicit membrane (GBSAIM), GB with a simple switching (GBSW), and heterogeneous dielectric GB (HDGB)] were tested for their ability to discriminate the native conformation of five membrane proteins from 450 decoys generated by the Rosetta‐Membrane program. The energy ranking of the native state and Z‐scores were used to assess the performance of the models. The effect of membrane thickness was examined and was found to be substantial. Quite satisfactory discrimination was achieved with the all‐atom IMM1 and GBSW models at 25.4 Å thickness and with the HDGB model at 28.5 Å thickness. The energy components by themselves were not discriminative. Both van der Waals and electrostatic interactions contributed to native state discrimination, to a different extent in each model. Computational efficiency of the models decreased in the order: extended‐atom IMM1 > all‐atom IMM1 > GBSAIM > GBSW > HDGB. These results encourage the further development and use of implicit membrane models for membrane protein structure prediction. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Reliable computer simulations of complex biological environments such as integral membrane proteins with explicit water and lipid molecules remain a challenging task. We propose a modification of the standard generalized Born theory of homogeneous solvent for modeling the heterogeneous dielectric environments such as lipid/water interfaces. Our model allows the representation of biological membranes in the form of multiple layered dielectric regions with dielectric constants that are different from the solute cavity. The proposed new formalism is shown to predict the electrostatic component of solvation free energy with a relative error of 0.17% compared to exact finite-difference solutions of the Poisson equation for a transmembrane helix test system. Molecular dynamics simulations of melittin and bacteriorhodopsin are carried out and performed over 10 ns and 7 ns of simulation time, respectively. The center of melittin along the membrane normal in these stable simulations is in excellent agreement with the relevant experimental data. Simulations of bacteriorhodopsin started from the experimental structure remained stable and in close agreement with experiment. We also examined the free energy profiles of water and amino acid side chain analogs upon membrane insertion. The results with our implicit membrane model agree well with the experimental transfer free energy data from cyclohexane to water as well as explicit solvent simulations of water and selected side chain analogs.  相似文献   

7.
Monte Carlo (MC) methods are important computational tools for molecular structure optimizations and predictions. When solvent effects are explicitly considered, MC methods become very expensive due to the large degree of freedom associated with the water molecules and mobile ions. Alternatively implicit-solvent MC can largely reduce the computational cost by applying a mean field approximation to solvent effects and meanwhile maintains the atomic detail of the target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann (PB) model and the Generalized Born (GB) model in a way such that the GB model is an approximation to the PB model but is much faster in simulation time. In this work, we develop a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by combining the advantages of both implicit solvent models in accuracy and efficiency. Specifically, the MLIMC method uses a fast and accurate PB-based machine learning (PBML) scheme to compute the electrostatic solvation free energy at each step. We validate our MLIMC method by using a benzene-water system and a protein-water system. We show that the proposed MLIMC method has great advantages in speed and accuracy for molecular structure optimization and prediction.  相似文献   

8.
A comparative analysis is provided of the effect of different solvent models on the calculation of a potential of mean force (PMF) for determining the absolute binding affinity of the small molecule inhibitor pteroic acid bound to ricin toxin A-chain (RTA). Solvent models include the distance-dependent dielectric constant, several different generalized Born (GB) approximations, and a hybrid explicit/GB-based implicit solvent model. We found that the simpler approximation of dielectric screening and a GB model, with Born radii fitted to a switching-window dielectric-boundary surface Poisson solvent model, severely overpredicted the binding affinity as compared to the experimental value, estimated to range from -4.4 to -6.0 kcal/mol. In contrast, GB models that are parametrized to fit the Lee-Richards molecular surface performed much better, predicting binding free energy within 1-3 kcal/mol of experimental estimates. However, the predicted free-energy profiles of these GB models displayed alternative binding modes not observed in the crystal structure. Finally, the most rigorous and computationally costly approach in this work, which used a hybrid explicit/implicit solvent model, correctly determined a binding funnel in the PMF near the crystallographic bound state and predicted an absolute binding affinity that was 2 kcal/mol more favorable than the estimated experimental binding affinity.  相似文献   

9.
A generalized Born (GB) model is proposed that approximates the electrostatic part of macromolecular solvation free energy over the entire range of the solvent and solute dielectric constants. The model contains no fitting parameters, and is derived by matching a general form of the GB Green function with the exact Green's function of the Poisson equation for a random charge distribution inside a perfect sphere. The sphere is assumed to be filled uniformly with dielectric medium epsilon(in), and is surrounded by infinite solvent of constant dielectric epsilon(out). This model is as computationally efficient as the conventional GB model based on the widely used functional form due to Still et al. [J. Am. Chem. Soc. 112, 6127 (1990)], but captures the essential physics of the dielectric response for all values of epsilon(in) and epsilon(out). This model is tested against the exact solution on a perfect sphere, and against the numerical Poisson-Boltzmann (PB) treatment on a set of macromolecules representing various structural classes. It shows reasonable agreement with both the exact and the numerical solutions of the PB equation (where available) considered as reference, and is more accurate than the conventional GB model over the entire range of dielectric values.  相似文献   

10.
The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties are reproduced. Effects of the truncation of electrostatic interactions were examined. For all proteins, the HDGB model was able to generate stable trajectories that remained close to the starting experimental structures, in excellent agreement with explicit membrane simulations. Dynamic properties evaluated through a comparison of B-factors are also in good agreement with experiment and explicit membrane simulations. However, overall flexibility was slightly underestimated with the HDGB model unless a very large electrostatic cutoff is employed. Results with the HDGB model are further compared with equivalent simulations in implicit aqueous solvent, demonstrating that the membrane environment leads to more realistic simulations.  相似文献   

11.
Generalized Born solvation models offer a popular method of including electrostatic aspects of solvation free energies within an analytical model that depends only upon atomic coordinates, charges, and dielectric radii. Here, we describe how second derivatives with respect to Cartesian coordinates can be computed in an efficient manner that can be distributed over multiple processors. This approach makes possible a variety of new methods of analysis for these implicit solvation models. We illustrate three of these methods here: the use of Newton-Raphson optimization to obtain precise minima in solution; normal mode analysis to compute solvation effects on the mechanical properties of DNA; and the calculation of configurational entropies in the MM/GBSA model. An implementation of these ideas, using the Amber generalized Born model, is available in the nucleic acid builder (NAB) code, and we present examples for proteins with up to 45,000 atoms. The code has been implemented for parallel computers using both the OpenMP and MPI environments, and good parallel scaling is seen with as many as 144 OpenMP processing threads or MPI processing tasks.  相似文献   

12.
Poisson-Boltzmann (PB) models are a fast and common tool for studying electrostatic processes in proteins, particularly their ionization equilibrium (protonation and/or reduction), often yielding quite good results when compared with more detailed models. Yet, they are conceptually very simple and necessarily approximate, their empirical character being most evident when it comes to the choice of the dielectric constant assigned to the protein region. The present study analyzes several factors affecting the ability of PB-based methods to model protein ionization equilibrium. We give particular attention to a suggestion made by Warshel and co-workers (e.g., Sham et al. J. Phys. Chem. B 1997, 101, 4458) of using different protein dielectric constants for computing the individual (site) and the pairwise (site-site) terms of the ionization free energies. Our prediction of pK(a) values for several proteins indicates that no advantage is obtained by such a procedure, even for sites that are buried and/or display large pK(a) shifts relative to the solution values. In particular, the present methodology gives the best predictions using a dielectric constant around 20, for shifted/buried and nonshifted/exposed sites alike. The similarities and differences between the PB model and Warshel's PDLD/S model are discussed, as well as the reasons behind their apparently discrepant results. The present PB model is shown to predict also good reduction potentials in redox proteins.  相似文献   

13.
14.
Many recent advances in Poisson-Boltzmann and generalized Born implicit solvent models have used atom-centered polynomial or Gaussian functions to define the boundary separating low and high dielectric regions. In contrast to the Lee and Richards molecular surface, atom-centered surfaces result in interatomic crevices and buried pockets of high dielectric which are too small for a solvent molecule to occupy. We show that these interstitial high dielectric regions are of significant magnitude in globular proteins, that they artificially increase solvation energies, and that they distort the free energy surface of nonbonded interactions. These results suggest that implicit solvent dielectric functions must exclude interstitial high dielectric regions in order to yield physically meaningful results.  相似文献   

15.
Ionizable residues play important roles in protein structure and activity, and proton binding is a valuable reporter of electrostatic interactions in these systems. We use molecular dynamics free energy simulations (MDFE) to compute proton pKa shifts, relative to a model compound in solution, for three aspartate side chains in two proteins. Simulations with explicit solvent and with an implicit, dielectric continuum solvent are reported. The implicit solvent simulations use the generalized Born (GB) model, which provides an approximate, analytical solution to Poisson's equation. With explicit solvent, the direction of the pKa shifts is correct in all three cases with one force field (AMBER) and in two out of three cases with another (CHARMM). For two aspartates, the dielectric response to ionization is found to be linear, even though the separate protein and solvent responses can be nonlinear. For thioredoxin Asp26, nonlinearity arises from the presence of two substates that correspond to the two possible orientations of the protonated carboxylate. For this side chain, which is partly buried and has a large pKa upshift, very long simulations are needed to correctly sample several slow degrees of freedom that reorganize in response to the ionization. Thus, nearby Lys57 rotates to form a salt bridge and becomes buried, while three waters intercalate along the opposite edge of Asp26. Such strong and anisotropic reorganization is very difficult to predict with Poisson-Boltzmann methods that only consider electrostatic interactions and employ a single protein structure. In contrast, MDFE with a GB dielectric continuum solvent, used for the first time for pKa calculations, can describe protein reorganization accurately and gives encouraging agreement with experiment and with the explicit solvent simulations.  相似文献   

16.
Generalized Born (GB) models provide a computationally efficient means of representing the electrostatic effects of solvent and are widely used, especially in molecular dynamics (MD). A class of particularly fast GB models is based on integration over an interior volume approximated as a pairwise union of atom spheres-effectively, the interior is defined by a van der Waals rather than Lee-Richards molecular surface. The approximation is computationally efficient, but if uncorrected, allows for high dielectric (water) regions smaller than a water molecule between atoms, leading to decreased accuracy. Here, an earlier pairwise GB model is extended by a simple analytic correction term that largely alleviates the problem by correctly describing the solvent-excluded volume of each pair of atoms. The correction term introduces a free energy barrier to the separation of non-bonded atoms. This free energy barrier is seen in explicit solvent and Lee-Richards molecular surface implicit solvent calculations, but has been absent from earlier pairwise GB models. When used in MD, the correction term yields protein hydrogen bond length distributions and polypeptide conformational ensembles that are in better agreement with explicit solvent results than earlier pairwise models. The robustness and simplicity of the correction preserves the efficiency of the pairwise GB models while making them a better approximation to reality.  相似文献   

17.
The effects of the use of three generalized Born (GB) implicit solvent models on the thermodynamics of a simple polyalanine peptide are studied via comparing several hundred nanoseconds of well-converged replica exchange molecular dynamics (REMD) simulations using explicit TIP3P solvent to REMD simulations with the GB solvent models. It is found that when compared to REMD simulations using TIP3P the GB REMD simulations contain significant differences in secondary structure populations, most notably an overabundance of alpha-helical secondary structure. This discrepancy is explored via comparison of the differences in the electrostatic component of the free energy of solvation (DeltaDeltaG(pol)) between TIP3P (via thermodynamic Integration calculations), the GB models, and an implicit solvent model based on the Poisson equation (PE). The electrostatic components of the solvation free energies are calculated using each solvent model for four representative conformations of Ala10. Since the PE model is found to have the best performance with respect to reproducing TIP3P DeltaDeltaG(pol) values, effective Born radii from the GB models are compared to effective Born radii calculated with PE (so-called perfect radii), and significant and numerous deviations in GB radii from perfect radii are found in all GB models. The effect of these deviations on the solvation free energy is discussed, and it is shown that even when perfect radii are used the agreement of GB with TIP3P DeltaDeltaG(pol) values does not improve. This suggests a limit to the optimization of the effective Born radius calculation and that future efforts to improve the accuracy of GB models must extend beyond such optimizations.  相似文献   

18.
Implicit solvation models are commonly optimized with respect to experimental data or Poisson-Boltzmann (PB) results obtained for small molecules, where the force field is sometimes not considered. In previous studies, we have developed an optimization procedure for cyclic peptides and surface loops in proteins based on the entire system studied and the specific force field used. Thus, the loop has been modeled by the simplified solvation function E(tot) = E(FF) (epsilon = 2r) + Sigma(i) sigma(i)A(i), where E(FF) (epsilon = nr) is the AMBER force field energy with a distance-dependent dielectric function, epsilon = nr, A(i) is the solvent accessible surface area of atom i, and sigma(i) is its atomic solvation parameter. During the optimization process, the loop is free to move while the protein template is held fixed in its X-ray structure. To improve on the results of this model, in the present work we apply our optimization procedure to the physically more rigorous solvation model, the generalized Born with surface area (GB/SA) (together with the all-atom AMBER force field) as suggested by Still and co-workers (J. Phys. Chem. A 1997, 101, 3005). The six parameters of the GB/SA model, namely, P(1)-P(5) and the surface area parameter, sigma (programmed in the TINKER package) are reoptimized for a "training" group of nine loops, and a best-fit set is defined from the individual sets of optimized parameters. The best-fit set and Still's original set of parameters (where Lys, Arg, His, Glu, and Asp are charged or neutralized) were applied to the training group as well as to a "test" group of seven loops, and the energy gaps and the corresponding RMSD values were calculated. These GB/SA results based on the three sets of parameters have been found to be comparable; surprisingly, however, they are somewhat inferior (e.g, of larger energy gaps) to those obtained previously from the simplified model described above. We discuss recent results for loops obtained by other solvation models and potential directions for future studies.  相似文献   

19.
Estimating protein-protein interaction energies is a very challenging task for current simulation protocols. Here, absolute binding free energies are reported for the complex H-Ras/C-Raf1 using the MM-PB(GB)SA approach, testing the internal consistency and model dependence of the results. Averaging gas-phase energies (MM), solvation free energies as determined by Generalized Born models (GB/SA), and entropic contributions calculated by normal mode analysis for snapshots obtained from 10 ns explicit-solvent molecular dynamics in general results in an overestimation of the binding affinity when a solvent-accessible surface area-dependent model is used to estimate the nonpolar solvation contribution. Applying the sum of a cavity solvation free energy and explicitly modeled solute-solvent van der Waals interaction energies instead provides less negative estimates for the nonpolar solvation contribution. When the polar contribution to the solvation free energy is determined by solving the Poisson-Boltzmann equation (PB) instead, the calculated binding affinity strongly depends on the atomic radii set chosen. For three GB models investigated, different absolute deviations from PB energies were found for the unbound proteins and the complex. As an alternative to normal-mode calculations, quasiharmonic analyses have been performed to estimate entropic contributions due to changes of solute flexibility upon binding. However, such entropy estimates do not converge after 10 ns of simulation time, indicating that sampling issues may limit the applicability of this approach. Finally, binding free energies estimated from snapshots of the unbound proteins extracted from the complex trajectory result in an underestimate of binding affinity. This points to the need to exercise caution in applying the computationally cheaper "one-trajectory-alternative" to systems where there may be significant changes in flexibility and structure due to binding. The best estimate for the binding free energy of Ras-Raf obtained in this study of -8.3 kcal mol(-1) is in good agreement with the experimental result of -9.6 kcal mol(-1), however, further probing the transferability of the applied protocol that led to this result is necessary.  相似文献   

20.
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号