首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The stability of the Pt-3d-Pt(111) (3d = Ti, V, Cr, Mn, Fe, Co, or Ni) bimetallic surface structures in the presence of adsorbed oxygen has been investigated by means of density functional theory (DFT). The dissociative binding energies of oxygen on Pt-3d-Pt(111) (i.e., subsurface 3d monolayer) and 3d-Pt-Pt(111) (i.e., surface 3d monolayer) were calculated. All of the Pt-3d-Pt(111) surfaces were found to have weaker oxygen binding energies than pure Pt(111) whereas all of the 3d-Pt-Pt(111) surfaces were found to have stronger oxygen binding energies than pure Pt(111). The total heat of reaction was calculated for the segregation for 3d metal atoms from Pt-3d-Pt(111) to 3d-Pt-Pt(111) when exposed to a half monolayer of oxygen. All of the Pt-3d-Pt(111) subsurface structures were predicted to be thermodynamically unstable with adsorbed oxygen. In addition, the segregation of subsurface Ni and Co to the surfaces of Pt-Ni-Pt(111) and Pt-Co-Pt(111) was investigated experimentally using Auger electron spectroscopy (AES) and high-resolution electron energy loss spectroscopy (HREELS). AES and HREELS confirmed the trend predicted by DFT modeling and showed that both the Pt-Ni-Pt(111) and Pt-Co-Pt(111) surface structures were unstable in the presence of adsorbed oxygen. The activation barrier of the segregation of surbsurface Ni and Co atoms was determined to be 15 +/- 2 and 7 +/- 1 kcal/mol, respectively. These results are further discussed for their implication in the design and selection of cathode bimetallic electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrode membrane (PEM) fuel cells.  相似文献   

2.
Recent quantum mechanical (QM) calculations for a monolayer of H(2)O on Ru(0001) suggested a novel stable structure with half the waters dissociated. However, different studies on Pt(111) suggested an undissociated bilayer structure in which the outer half of the water has the OH bonds toward the surface rather than the O lone pair. Since water layers on Pt are important in many catalytic processes (e.g., the fuel cell cathode), we calculated the energetics and structure of the first monolayer of water on the Pt(111) surface using QM [periodic slab using density functional calculations (DFT) with the PBE-flavor of exchange-correlation functional]. We find that the fully saturated surface ((2)/(3) ML) has half the water almost parallel to the surface (forming a Pt-O Lewis acid-base bond), whereas the other half are perpendicular to the surface, but with the H down toward the surface (forming a Pt-HO agostic bond). This leads to a net bond energy of 0.60 eV/water = 13.8 kcal/mol (the standard ice model with the H up configuration of the water molecules perpendicular to the surface is less stable by 0.092 eV/water = 2.1 kcal/mol). We examined whether the partial dissociation of water proposed for Ru(0001) could occur on Pt(111). For the saturated water layer ((2)/(3) ML) we find a stable structure with half the H(2)O dissociated (forming Pt-OH and Pt-H covalent bonds), which is less favorable by only 0.066 eV/water = 1.51 kcal/mol. These results confirm the interpretation of combined experimental (XAS, XES, XPS) and theoretical (DFT cluster and periodic including spectrum calculations) studies, which find only the H down undissociated case. We find that the undissociated structure leads to a vertical displacement between the two layers of oxygens of approximately 0.42 A (for both H down and H up). In contrast, the partially dissociated system leads to a flat structure with a separation of the oxygen layers of 0.08 A. Among the partially dissociated systems, we find that all subsurface positions for the dissociated hydrogen are less favorable than adsorbing on top of the free Pt surface atom. Our results suggest that for less than (1)/(3) ML, clustering would be observed rather than ordered monolayer structures.  相似文献   

3.
We have performed first-principle density functional theory calculations to investigate how a subsurface transition metal M (M = Ni, Co, or Fe) affects the energetics and mechanisms of oxygen reduction reaction (ORR) on the outermost Pt mono-surface layer of Pt/M(111) surfaces. In this work, we found that the subsurface Ni, Co, and Fe could down-shift the d-band center of the Pt surface layer and thus weaken the binding of chemical species to the Pt/M(111) surface. Moreover, the subsurface Ni, Co, and Fe could modify the heat of reaction and activation energy of various elementary reactions of ORR on these Pt/M(111) surfaces. Our DFT results revealed that, due to the influence of the subsurface Ni, Co, and Fe, ORR would adopt a hydrogen peroxide dissociation mechanism with an activation energy of 0.15 eV on Pt/Ni(111), 0.17 eV on Pt/Co(111), and 0.16 eV on Pt/Fe(111) surface, respectively, for their rate-determining O2 protonation reaction. In contrast, ORR would follow a peroxyl dissociation mechanism on a pure Pt(111) surface with an activation energy of 0.79 eV for its rate-determining O protonation reaction. Thus, our theoretical study explained why the subsurface Ni, Co, and Fe could lead to multi-fold enhancement in catalytic activity for ORR on the Pt mono-surface layer of Pt/M(111) surfaces.  相似文献   

4.
Quantum state-resolved sticking coefficients on Pt(111) and Ni(111) surfaces have been measured for CH4 excited to the first overtone of the antisymmetric C-H stretch (2nu3) at well-defined kinetic energies in the range of 10-90 kJ/mol. The ground-state reactivity of CH4 is approximately 3 orders of magnitude lower on Ni(111) than on Pt(111) for kinetic energies in the range of 10-64 kJ/mol, reflecting a difference in barrier height of 28+/-6 kJ/mol. 2nu3 excitation of CH4 increases its reactivity by more than 4 orders of magnitude on Ni(111), whereas on Pt(111) the reactivity increase is lower by 2 orders of magnitude. We discuss the observed differences in the state-resolved reactivity for the ground state and 2nu3 excited state of methane in terms of a difference in barrier height and transition state location for the dissociation reaction on the two metal surfaces.  相似文献   

5.
The adsorption and hydrogenation of carbon tetrachloride (CCl(4)) on a Pt (111) surface have been investigated using density functional theory (DFT). We have performed calculations on the adsorption energies and structures of CCl(4) on four different adsorption sites of a Pt (111) surface using the full adsorbate geometry optimization method. The results show that the adsorption energy of all of the potential sites is less than -17 kcal/mol, which indicates that CCl(4) is physiosorbed on a Pt (111) surface through van der Waals interactions. The dissociation and hydrogenation pathways were investigated by a transition state search. For the Pt(15), Pt(19), and Pt(25) cluster surfaces, the activation energies of dissociation obtained in this work are 15.69, 16.94, and 16.77 kcal/mol, respectively. The hydrogenation of CCl(3). was studied at the on-top site of the Pt(15) cluster, and the calculated activation energy is 5.06 kcal/mol. The small activation energies indicate that the Pt (111) surface has high catalytic activity for the CCl(4) hydrogenation reaction. In addition, the Hirshfeld population analysis reveals that the charge transfer from the Pt (111) surface to the adsorbates occurs in both the dissociation and hydrogenation pathways.  相似文献   

6.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

7.
用基于密度泛函理论的第一性原理方法研究了氧原子在具有Pt皮肤的Pt3Ni(111)[记为Pt-skin-Pt3Ni(111)]表面的吸附和扩散特性. 重点研究了氧原子在Pt-skin-Pt3Ni(111)表面的扩散问题, 这对理解Pt-skin-Pt3Ni(111)催化剂的高催化活性有重要意义. 结果表明: 氧原子容易吸附在fcc位; 催化剂Pt3Ni中的Ni原子对催化剂的电子结构有很大影响, 从而改变了其对氧原子的吸附. 用推拉弹性带(NEB)方法搜索氧原子的扩散势垒, 并解释了Pt-skin-Pt3Ni(111)催化剂的高催化活性.  相似文献   

8.
Atomic oxygen chemisorption has been studied for the fourfold hollow site of the Ni(100) surface and for the threefold hollow site of the Ni(111) surface. To model the Ni(100) surface, 10 different clusters in the range Ni5 to Ni41 were used, and for the Ni(111) surface, 11 different clusters in the range Ni13 to Ni43 were used. A detailed analysis of the orbital occupations of the cluster with and without oxygen for the different clusters shows that there are three different possible bonding mechanisms. In two of these, the basic feature is that a1 electrons of the cluster are kicked out by the oxygen 2pz orbital and moved to holes in the 2px, y orbitals. A picture where the oxygen electrons fit into the electronic structure of the cluster is emphasized. The third mechanism, which is applicable for only one cluster, can be described as the formation of two covalent bonds of E symmetry. The final best estimate of the oxygen chemisorption energy for the Ni(100) surface is about 130 kcal/mol, and for the Ni(111) surface, about 115 kcal/mol. In particular for the Ni(111) surface, an excited oxygen state with radical character is identified, which might be a catalytically important species. The excitation energy to reach this state should be on the order of 10 kcal/mol for the Ni(111) surface.  相似文献   

9.
采用密度泛函理论,对Pt(111)和Pt3Ni(111)表面上CO和O的单独吸附、共吸附以及CO的氧化反应进行了系统的研究. 结果表明, Pt3Ni(111)表面上CO的吸附弱于Pt(111)表面, O的吸附明显强于Pt(111)表面. 两个表面表现出相似的CO催化氧化活性. 表面Ni的存在不但稳定了O的吸附,同时也降低了过渡态O的能量.  相似文献   

10.
DFT and MP2 to MP4(SDQ) methods were applied to M(PH3)2(C60), Pt(PH3)2(C20H10), and Pt(PH3)2(C21H12) (M = Pd or Pt, C20H10 = corannulene, and C21H12 = sumanene). The binding energy considerably fluctuates around MP2 and MP3 levels but much less upon going from MP3 to MP4(SDQ) in Pt(PH3)2(C2H4), Pt(PH3)2(C20H10), and Pt(PH3)2(C21H12). Also, the MP4(SDQ) method presents a binding energy similar to that of the CCSD(T) method in Pt(PH3)2(C2H4). Thus, it is likely that the MP4(SDQ) method is useful to evaluate binding energies of these complexes. The binding energies of Pt(PH3)2(C20H10) and Pt(PH3)2(C21H12) are evaluated to be 24.9 and 26.1 kcal/mol, respectively, by the MP4(SDQ) method and only +5.8 and -2.6 kcal/mol, respectively, by the DFT(B3LYP) method. These MP4(SDQ)-calculated binding energies of Pt(PH3)2(C20H10) and Pt(PH3)2(C21H12) are similar to that of Pt(PH3)2(C2H4), which strongly suggests that these complexes can be successfully synthesized. The binding energy of Pt(PH3)2(C60) is evaluated to be 44.8 and 45.5 kcal/mol with the ONIOM(MP4(SDQ):UFF) and ONIOM(MP4(SDQ):B3LYP) methods, respectively, and that of the Pd analogue is evaluated to be 39.9 kcal/mol with the ONIOM(MP4(SDQ):UFF) method, whereas the DFT(B3LYP), DFT(BVP86), and DFT(BPW91) methods provide much smaller binding energies. It is noted that these binding energies are much larger than those of the ethylene, corannulene, and sumanene analogues. This difference is reasonably interpreted in terms that the LUMO of C60 is at much lower energy than those of ethylene, corannulene, and sumanene. We investigated also how to separate the high level and the low level regions in the ONIOM calculation of M(PH3)2(C60) and proposed here the reasonable way to evaluate the binding energy of transition-metal complexes of C60.  相似文献   

11.
Reaction mechanisms for the interactions between CeO(2)(111) and (110) surfaces are investigated using periodic density functional theory (DFT) calculations. Both standard DFT and DFT+U calculations to examine the effect of the localization of Ce 4f states on the redox chemistry of H(2)-CeO(2) interactions are described. For mechanistic studies, molecular and dissociative local minima are initially located by placing an H(2) molecule at various active sites of the CeO(2) surfaces. The binding energies of physisorbed species optimized using the DFT and DFT+U methods are very weak. The dissociative adsorption reactions producing hydroxylated surfaces are all exothermic; exothermicities at the DFT level range from 4.1 kcal mol(-1) for the (111) to 26.5 kcal mol(-1) for the (110) surface, while those at the DFT+U level are between 65.0 kcal mol(-1) for the (111) and 81.8 kcal mol(-1) for the (110) surface. Predicted vibrational frequencies of adsorbed OH and H(2)O species on the surfaces are in line with available experimental and theoretical results. Potential energy profiles are constructed by connecting molecularly adsorbed and dissociatively adsorbed intermediates on each CeO(2) surface with tight transition states using the nudged elastic band (NEB) method. It is found that the U correction method plays a significant role in energetics, especially for the intermediates of the exit channels and products that are partially reduced. The surface reduction reaction on CeO(2)(110) is energetically much more favorable. Accordingly, oxygen vacancies are more easily formed on the (110) surface than on the (111) surface.  相似文献   

12.
We used the B3LYP flavor of density functional theory (DFT) to study the chemisorption of all CH(x) and C(2)H(y) intermediates on the Pt(111) surface. The surface was modeled with the 35 atom Pt(14.13.8) cluster, which was found to be reliable for describing all adsorption sites. We find that these hydrocarbons all bind covalently (sigma-bonds) to the surface, in agreement with the studies by Kua and Goddard on small Pt clusters. In nearly every case the structure of the adsorbed hydrocarbon achieves a saturated configuration in which each C is almost tetrahedral with the missing H atoms replaced by covalent bonds to the surface Pt atoms. Thus, (Pt(3))CH prefers a mu(3) hollow site (fcc), (Pt(2))CH(2) prefers a mu(2) bridge site, and PtCH(3) prefers mu(1) on-top sites. Vinyl leads to (Pt(2))CH-CH(2)(Pt), which prefers a mu(3) hollow site (fcc). The only exceptions to this model are ethynyl (CCH), which binds as (Pt(2))C=CH(Pt), retaining a CC pi-bond while binding at a mu(3) hollow site (fcc), and HCCH, which binds as (Pt)HC=CH(Pt), retaining a pi bond that coordinates to a third atom of a mu(3) hollow site (fcc) to form an off center structure. These structures are in good agreement with available experimental data. For all species we calculated heats of formation (DeltaH(f)) to be used for considering various reaction pathways on Pt(111). For conditions of low coverage, the most strongly bound CH(x) species is methylidyne (CH, BE = 146.61 kcal/mol), and ethylidyne (CCH(3), BE = 134.83 kcal/mol) among the C(2)H(y) molecules. We find that the net bond energy is nearly proportional to the number of C-Pt bonds (48.80 kcal/mol per bond) with the average bond energy decreasing slightly with the number of C ligands.  相似文献   

13.
An analytic potential energy surface has been constructed by fitting to about 28 thousand energy points for the electronic ground-state (X (2)A') of HO(3). The energy points are calculated using a hybrid density functional HCTH and a large basis set aug-cc-pVTZ, i.e., a HCTH/aug-cc-pVTZ density functional theory (DFT) method. The DFT calculations show that the trans-HO(3) isomer is the global minimum with a potential well depth of 9.94 kcal mol(-1) with respect to the OH + O(2) asymptote. The equilibrium geometry of the cis-HO(3) conformer is located 1.08 kcal mol(-1) above that of the trans-HO(3) one with an isomerization barrier of 2.41 kcal mol(-1) from trans- to cis-HO(3). By using this surface, a rigorous quantum dynamics (QD) study has been carried out for computing the rovibrational energy levels of HO(3). The calculated results determine a dissociation energy of 6.15 kcal mol(-1), which is in excellent agreement with the experimental value of Lester et al. [J. Phys. Chem. A, 2007, 111, 4727.].  相似文献   

14.
The heat of adsorption and sticking probability of cyclohexene on Pt(111) were measured as a function of coverage using single-crystal adsorption calorimetry in the temperature range from 100 to 300 K. At 100 K, cyclohexene adsorbs as intact di-sigma bonded cyclohexene on Pt(111), and the heat of adsorption is well described by a second-order polynomial (130 - 47 theta - 1250 theta(2)) kJ/mol, yielding a standard enthalpy of formation of di-sigma bonded cyclohexene on Pt(111) at low coverages of -135 kJ/mol and a C-Pt sigma bond strength of 205 kJ/mol. At 281 K, cyclohexene dehydrogenates upon adsorption, forming adsorbed 2-cyclohexenyl (c-C6H(9,a)) and adsorbed hydrogen, and the heat of adsorption is well described by another second-order polynomial (174 - 700 theta + 761 theta(2)) kJ/mol. This yields a standard enthalpy of formation of adsorbed 2-cyclohexenyl on Pt(111) at a low coverage of -143 kJ/mol. At coverages below 0.10 ML, the sticking probability of cyclohexene on Pt(111) is close to unity (>0.95), independent of temperature.  相似文献   

15.
The heat of adsorption of naphthalene on Pt(111) at 300 K was measured with single-crystal adsorption calorimetry. The heat of adsorption on the ideal, defect-free surface is estimated to be (300 - 34 - 199(2)) kJ/mol. From this, a C-Pt bond energy for aromatic hydrocarbons on Pt(111) of approximately 30 kJ/mol is estimated, consistent with earlier results for benzene on Pt(111). There is higher heat of adsorption at very low coverage, attributed to step sites where the adsorption heat is >/=330 kJ/mol. Saturation coverage, = 1 ML, corresponds to 1.55 x 10(14) molecules/cm(2). Sticking probability measurements of naphthalene on Pt(111) give a high initial value of 1.0 and a Kisliuk-type coverage dependence that implies precursor-mediated sticking. The ratio of the hopping rate to the desorption rate of this precursor is approximately 51. Naphthalene adsorbs transiently on top of chemisorbed naphthalene molecules with a heat of adsorption of 83-87 kJ/mol.  相似文献   

16.
Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.  相似文献   

17.
使用密度泛函方法对C原子在Fe(111)表面吸附团聚和次表层的吸附扩散进行了研究。在炭覆盖度θC <1 ML时,C主要以孤立的原子态存在并导致表面重构;1 ML≤θC ≤2 ML,"mC2+nC"为主要的吸附形式;θC≥2 ML时,复杂的吸附形态比如碳链和岛状碳团簇开始生成。这些复杂岛状碳团簇是Fe(111)表面石墨沉积或碳纳米管生长的成核中心。在次表层,C原子在八面体位稳定存在。C在表面的迁移能垒为0.45 eV,由表面迁移到次表面的的能垒为0.73 eV。虽然C2团簇的生成是热力学有利的,但是C向次表层的迁移动力学上占优。  相似文献   

18.
Thermodynamic data are reported for intermolecular hydrogen-bonding association of 1 and 2 equiv of phenol with [1,3-bis(diphenylphosphino)propane](phenylethane-1,2-diolato)platinum(II) ((dppp)Pt(Ped)) in dichloromethane solution: = -7.0 +/- 0.1 kcal/mol, = -7.7 +/- 0.4 kcal/mol, = -11.3 +/- 0.4 eu, and = -17.8 +/- 1.2 eu. For comparison, the thermodynamics for hydrogen bonding of phenol to triphenylphosphine oxide in dichloromethane were also determined: DeltaH degrees = -5.1 +/- 0.3 kcal/mol; DeltaS degrees = -8.8 +/- 1.0 eu. Competitive coordination exchange reactions have been used to determine the apparent intramolecular hydrogen bond strengths in (dppp)Pt(1,2-O,O'-glycerolate) and (dppp)Pt(1,2-O,O'-butane-1,2,4-triolate) in both dichloromethane (DeltaG(313) = -2.05 +/- 0.05 and -2.52 +/- 0.06 kcal/mol, respectively) and pyridine (DeltaG(313) = -0.62 +/- 0.03 and -0.82 +/- 0.03 kcal/mol, respectively). Based on these findings, the role of hydrogen-bonding interactions in determining the regioselectivities of complexation of carbohydrates to diphosphine Pt(II) is discussed.  相似文献   

19.
采用从头算原子热力学方法系统研究了Ni-rich和Pt-rich条件下Pt3Ni(111)在不同偏析、表面化学吸附氧覆盖度下560个可能结构的相对稳定性,构建了氧气气氛下Pt3Ni(111)表面结构演化、直至满覆盖化学吸附氧的热力学相图.结果表明,随着氧的化学势的升高,在热力学上仅出现两类稳定的结构,主要包括没有化学吸附氧的干净Pt-skin表面,以及在很低氧的化学势下就形成的含有化学吸附氧的Ni-skin表面,而有化学吸附氧的PtNi表面合金化的中间结构则处于亚稳态.仔细分析发现,这些结构的形成主要由金属的偏析能、氧与两种金属成键强弱的差别、氧的化学势的高低三个因素共同决定.  相似文献   

20.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号