首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state-of-the-art carbon-based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl-chain regulated quantum dots as hole-conductors to reduce charge recombination. By precisely controlling alkyl-chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re-absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air.  相似文献   

2.
One‐dimensional (1D) nanostructured oxides are proposed as excellent electron transport materials (ETMs) for perovskite solar cells (PSCs); however, experimental evidence is lacking. A facile hydrothermal approach was employed to grow highly oriented anatase TiO2 nanopyramid arrays and demonstrate their application in PSCs. The oriented TiO2 nanopyramid arrays afford sufficient contact area for electron extraction and increase light transmission. Moreover, the nanopyramid array/perovskite system exhibits an oriented electric field that can increase charge separation and accelerate charge transport, thereby suppressing charge recombination. The anatase TiO2 nanopyramid array‐based PSCs deliver a champion power conversion efficiency of approximately 22.5 %, which is the highest power conversion efficiency reported to date for PSCs consisting of 1D ETMs. This work demonstrates that the rational design of 1D ETMs can achieve PSCs that perform as well as typical mesoscopic and planar PSCs.  相似文献   

3.
Moisture is the worst enemy for state‐of‐the‐art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all‐inorganic cesium lead bromide (CsPbBr3) solar cells tailored with carbon electrodes to simultaneously harvest solar and water‐vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof‐of‐concept multi‐energy integrated solar cells provides new opportunities of maximizing overall power output.  相似文献   

4.
One-dimensional (1D) nanostructured oxides are proposed as excellent electron transport materials (ETMs) for perovskite solar cells (PSCs); however, experimental evidence is lacking. A facile hydrothermal approach was employed to grow highly oriented anatase TiO2 nanopyramid arrays and demonstrate their application in PSCs. The oriented TiO2 nanopyramid arrays afford sufficient contact area for electron extraction and increase light transmission. Moreover, the nanopyramid array/perovskite system exhibits an oriented electric field that can increase charge separation and accelerate charge transport, thereby suppressing charge recombination. The anatase TiO2 nanopyramid array-based PSCs deliver a champion power conversion efficiency of approximately 22.5 %, which is the highest power conversion efficiency reported to date for PSCs consisting of 1D ETMs. This work demonstrates that the rational design of 1D ETMs can achieve PSCs that perform as well as typical mesoscopic and planar PSCs.  相似文献   

5.
Porphyrin, despite chosen by Nature as light harvesting units, hasn't revealed its full potentials as a structural unit in porphyrin‐incorporated polymers (PPors). A novel PPor was synthesized to investigate the origins of the low performances of PPor‐based polymer solar cells (PSCs). The polymer features broad absorption in the blue‐light region, because the diindenothieno[2,3‐b]thiophene (DITT) unit extended the conjugation in the polymer backbone. PPor‐DITT/PC71BM based PSCs have a high Voc (0.79 V). Their low Jsc and fill factor (FF) were attributed to the un‐optimized morphology, as indicated by the photoluminescence quenching and atomic force microscopy (AFM) experiments. Using PPor‐DITT as a blue‐light harvesting dopant in an amorphous host leverage the strong 400–550 nm absorption of PPor‐DITT and circumvent the difficulties in reaching optimized morphology in the PPor/PCBM thin films. An addition of 2 wt % of PPor‐DITT in ternary‐blend PSCs resulted in a 10 % increase of external quantum efficiency (EQE) in the blue‐light region. However, in a crystalline host, the dopant decreased the crystallinity of the host and led to large drops in FF and power conversion efficiencies (PCEs). The study provides an alternative route and expands the application of PPors in PSCs as a blue‐light harvester in ternary‐blend PSCs using amorphous polymers as host. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Herein, we report the facile growth of three‐dimensional CsPbBr3 perovskite supercrystals (PSCs) self‐assembled from individual CsPbBr3 perovskite quantum dots (PQDs). By varying the carbon chain length of a surface‐bound ligand molecule, 1‐alkynyl acid, different morphologies of PSCs were obtained accompanied by an over 1000‐fold photoluminescence improvement compared with that of PQDs. Systematic analyses have shown, for the first time, that under UV irradiation, CsBr, the byproduct formed during PQDs synthesis, could effectively catalyze the homocoupling reaction between two alkynyl groups, which further worked as a driving force to push forward the self‐assembly of PQDs.  相似文献   

7.
The all‐inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state‐of‐the‐art organic–inorganic PSCs. Setting inorganic hole‐transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M‐substituted, p‐type inorganic Cu(Cr,M)O2 (M=Ba2+, Ca2+, or Ni2+) nanocrystals with enhanced hole‐transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all‐inorganic CsPbBr3 PSC with a device structure of FTO/c‐TiO2/m‐TiO2/CsPbBr3/Cu(Cr,M)O2/carbon achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole‐free device. The unencapsulated Cu(Cr,Ba)O2‐based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 °C conditions over 40 days or light illumination for 7 days.  相似文献   

8.
Tin‐based perovskites with excellent optoelectronic properties and suitable band gaps are promising candidates for the preparation of efficient lead‐free perovskite solar cells (PSCs). However, it is challenging to prepare highly stable and efficient tin‐based PSCs because Sn2+ in perovskites can be easily oxidized to Sn4+ upon air exposure. Here we report the fabrication of air‐stable FASnI3 solar cells by introducing hydroxybenzene sulfonic acid or its salt as an antioxidant additive into the perovskite precursor solution along with excess SnCl2. The interaction between the sulfonate group and the Sn2+ ion enables the in situ encapsulation of the perovskite grains with a SnCl2–additive complex layer, which results in greatly enhanced oxidation stability of the perovskite film. The corresponding PSCs are able to maintain 80 % of the efficiency over 500 h upon air exposure without encapsulation, which is over ten times longer than the best result reported previously. Our results suggest a possible strategy for the future design of efficient and stable tin‐based PSCs.  相似文献   

9.
Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85MA0.15Pb(I0.95Br0.05)3-based PSCs by incorporating Ti3C2Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb−Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 μs and an enlarged crystal size exceeding 2.5 μm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.  相似文献   

10.
Hybrid organic‐inorganic perovskite solar cells (PSCs) have become a shining star in the photovoltaic field due to their spectacular increase in power conversion efficiency (PCE) from 3.8 % to over 23 % in just few years, opening up the potential in addressing the important future energy and environment issues. The excellent photovoltaic performance can be attributed to the unique properties of the organometal halide perovskite materials, including high absorption coefficient, tunable bandgap, high defect tolerance, and excellent charge transport characteristics. The authors entered this field when pursuing research on dye‐sensitized solar cells (DSCs) by leveraging nanorods arrays for vectorial transport of the extracted electrons. Soon after, we and others realized that while the organometal halide perovskite materials have excellent intrinsic properties for solar cells, interface engineering is at least equally important in the development of high‐performance PSCs, which includes surface defect passivation, band alignment, and heterojunction formation. Herein, we will address this topic by presenting the historical development and recent progress on the interface engineering of PSCs primarily of our own group. This review is mainly focused on the material and interface design of the conventional n‐i‐p, inverted p‐i‐n and carbon electrode‐based structure devices from our own experience and perspective. Finally, the challenges and prospects of this area for future development will also be discussed.  相似文献   

11.
A novel hole‐transporting molecule (F101) based on a furan core has been synthesized by means of a short, high‐yielding route. When used as the hole‐transporting material (HTM) in mesoporous methylammonium lead halide perovskite solar cells (PSCs) it produced better device performance than the current state‐of‐the‐art HTM 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). The F101‐HTM‐based device exhibited both slightly higher Jsc (19.63 vs. 18.41 mA cm?2) and Voc (1.1 vs. 1.05 V) resulting in a marginally higher power conversion efficiency (PCE) (13.1 vs. 13 %). The steady‐state and time‐resolved photoluminescence show that F101 has significant charge extraction ability. The simple molecular structure, short synthesis route with high yield and better performance in devices makes F101 an excellent candidate for replacing the expensive spiro‐OMeTAD as HTM in PSCs.  相似文献   

12.
A novel D–A1–D–A2 copolymer denoted as P1 containing two electron withdrawing units based on benzothiadiazole (BT) and 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3′,2′‐h]quinoxaline‐8,10(9H)–dione (PTQD) units was synthesized and characterized. The resulting copolymer exhibits a broad‐absorption spectrum, relatively deep lying HOMO energy level (?5.44 eV) and narrow optical bandgap (1.50 eV). Bulk heterojunction (BHJ) polymer solar cells (PSCs) based on P1 as donor and PC71BM as acceptor with optimized donor to acceptor weight ratio of 1:2 and processed with DIO/CB solvent showed good photovoltaic performance with power conversion efficiency of 6.21% which is higher than that of the device processed without solvent additive (4.40%). The absorption and morphology investigations of the active layers indicated that structural and morphological changes were induced by the solvent additive. This higher power conversion efficiency could be mainly attributed to the absorption enhancement and improved charge transported in the active layer induced by the better nanoscale morphology of the active layer. This study demonstrated that a copolymer with two different acceptor moieties in the backbone may be promising candidate as donor copolymer for solution processed BHJ PSCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 155–168  相似文献   

13.
The crystallographic defects inevitably incur during the solution processed organic‐inorganic hybrid perovskite film, especially at surface and the grain boundaries (GBs) of perovskite film, which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs). Here, a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra‐ammonium zinc phthalocyanine (ZnPc). The results demonstrated that a 2D‐3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn ? 1PbnI3n + 1 perovskite together with 3D MAPbI3 perovskite was successfully constructed on the top of 3D perovskite layer. This situation realized the efficient GBs passivation, thus reducing the defects in GBs. As expected, the corresponding PSCs with modified perovskite revealed an improved cell performance. The best efficiency reached 19.6%. Especially, the significantly enhanced long‐term stability of the responding PSCs against humidity and heating was remarkably achieved. Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.  相似文献   

14.
The interface of perovskite solar cells (PSCs) is significantly important for charge transfer and device stability, while the buried interface with the impact on perovskite film growth has been paid less attention. Herein, we use a molecular modifier, glycocyamine (GDA) to build a molecular bridge on the buried interface of SnO2/perovskite, resulting in superior interfacial contact. This is achieved through the strongly interaction between GDA and SnO2, which also appreciably modulates the energy level. Moreover, GDA can regulate the perovskite crystal growth, yielding perovskite film with enlarged grain size and absence of pinholes, exhibiting substantially reduced defect density. Consequently, PSCs with GDA modification demonstrate significant improvement of open circuit voltage (close to 1.2 V) and fill factor, leading to an improved power conversion efficiency from 22.60 % to 24.70 %. Additionally, stabilities of GDA devices under maximum power point and 85 °C heat both perform better than the control devices.  相似文献   

15.
Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V.  相似文献   

16.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

17.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

18.
Tin‐based halide perovskite materials have been successfully employed in lead‐free perovskite solar cells, but the overall power conversion efficiencies (PCEs) have been limited by the high carrier concentration from the facile oxidation of Sn2+ to Sn4+. Now a chemical route is developed for fabrication of high‐quality methylammonium tin iodide perovskite (MASnI3) films: hydrazinium tin iodide (HASnI3) perovskite film is first solution‐deposited using presursors hydrazinium iodide (HAI) and tin iodide (SnI2), and then transformed into MASnI3 via a cation displacement approach. With the two‐step process, a dense and uniform MASnI3 film is obtained with large grain sizes and high crystallization. Detrimental oxidation is suppressed by the hydrazine released from the film during the transformation. With the MASnI3 as light harvester, mesoporous perovskite solar cells were prepared, and a maximum power conversion efficiency (PCE) of 7.13 % is delivered with good reproducibility.  相似文献   

19.
Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2. Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000 hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.  相似文献   

20.
Rationally managing the secondary-phase excess lead iodide (PbI2) in hybrid perovskite is of significance for pursuing high performance perovskite solar cells (PSCs), while the challenge remains on its conversion to a homogeneous layer that is robust stable against environmental stimuli. We herein demonstrate an effective strategy of surface reconstruction that converts the excess PbI2 into a gradient lead sulfate-silica bi-layer, which substantially stabilizes the perovskite film and reduces interfacial charge transfer barrier in the PSCs device. The perovskite films with such bi-layer could bear harsh conditions such as soaking in water, light illumination at 70 % relative humidity, and the damp-thermal (85 °C and 30 % humidity) environment. The resulted PSCs deliver a champion efficiency up to 24.09 %, as well as remarkable environmental stability, e.g., retaining 78 % of their initial efficiency after 5500 h of shelf storage, and 82 % after 1000 h of operational stability testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号