首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自从我们课题组在2011年首次报道化学改性碳用于锂硫电池以来,其在锂硫电池中的应用便引起了人们的广泛关注。与传统碳质材料相比,化学改性碳在抑制多硫离子的溶解和扩散,实现锂硫电池长循环寿命方面展现出了其独特的优势和前景,已成为当前锂硫电池领域研究的热点和前沿。本综述主要报道了本课题组在化学改性碳高效利用硫材料以及其与多硫离子的化学和物理吸附协同作用高效固硫方面所取得的研究进展,系统介绍了不同化学改性碳的结构特点、优势及在锂硫电池中的应用,展望了化学改性碳在锂硫电池中的应用前景。  相似文献   

2.
The emergence of nanotechnology has opened new horizons for electrochemical biosensors. This review highlights new concepts for electrochemical biosensors based on different carbon/inorganic hybrid nanoarchitectures. Particular attention will be given to hybrid nanostructures involving 1‐ or 2‐dimensional carbon nanotubes or graphene along with inorganic nanoparticles (gold, platinum, quantum dot (QD), metal oxide). Latest advances (from 2007 onwards) in electrochemical biosensors based on such hybrids of carbon/inorganic‐nanomaterial heterostructures are discussed and illustrated in connection to enzyme electrodes for blood glucose or immunoassays of cancer markers. Several strategies for using carbon/inorganic nanohybrids in such bioaffinity and biocatalytic sensing are described, including the use of hybrid nanostructures for tagging or modifying electrode transducers, use of inorganic nanomaterials as surface modifiers along with carbon nanomaterial label carriers, and carbon nanostructure‐based electrode transducers along with inorganic amplification tags. The implications of these nanoscale bioconjugated hybrid materials on the development of modern electrochemical biosensors are discussed along with future prospects and challenges.  相似文献   

3.
周兰  余爱水 《电化学》2015,21(3):211-220
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望.  相似文献   

4.
A carbon‐sulfur hybrid with pomegranate‐like core–shell structure, which demonstrates a high rate performance and relatively high cyclic stability, is obtained through carbonization of a carbon precursor in the presence of a sulfur precursor (FeS2) and a following oxidation of FeS2 to sulfur by HNO3. Such a structure effectively protects the sulfur and leaves enough buffer space after Fe3+ removal and, at the same time, has an interconnected conductive network. The capacity of the obtained hybrid is 450 mA h g?1 under the current density of 5 C. This work provides a simple strategy to design and prepare various high‐performance carbon‐sulfur hybrids for lithium‐sulfur batteries.  相似文献   

5.
This work examines the effects of structural and surface properties of carbon materials on the adsorption of benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT) in the presence of 10 wt % of aromatics in liquid alkanes that simulate sulfur compounds in diesel fuels. The equilibrium-adsorption capacity varies significantly, from 1.7 to 7.0 mg-S/g-A. The results show that different carbon materials have significantly different sulfur-adsorption capacities and selectivities that depend not only on textural structure but also on surface functional groups. The adsorption of multi-ring sulfur compounds on carbon materials was found to obey the Langmuir isotherm. On the basis of adsorption tests and the characterization of carbon materials by BET and XPS, the oxygen-containing functional groups on the surface appear to play an important role in increasing sulfur-adsorption capacity. The adsorption-selectivity trend of the carbon materials for various compounds increases in the order of BT < naphthalene < 2-methylnaphthalene < DBT < 4-MDBT < 4,6-DMDBT, regardless of carbon material types. This selectivity trend for sulfur compounds is dramatically different and almost opposite from that previously observed for adsorption over nickel-based adsorbents. The regeneration of spent activated carbons was also conducted by solvent washing. The high-adsorption capacity and selectivity for methyl DBTs indicate that certain activated carbons are promising adsorbents for selective adsorption for removing sulfur (SARS) as a new approach to ultra deep desulfurization of diesel fuels.  相似文献   

6.
Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials.  相似文献   

7.
Heteroatom‐doped porous carbon materials have exhibited promising applications in various fields. In this work, sulfur, nitrogen co‐doped carbon materials (SNCs) with abundant pore structure were prepared by pyrolysis of sulfur, nitrogen‐containing porous organic polymers (POPs) mixed with nano‐CaCO3 at high temperature. Among the resultant materials, SNC‐Ca‐850 possesses a relatively high level of doped heteroatoms and exhibits an excellent catalytic performance for the selective oxidation of benzylic C?H bonds. It is noteworthy that nano‐CaCO3 increases the doped sulfur content in the synthesized carbon materials to a large extent and impacts the existence modes of sulfur. In addition, it enhances the porous structure and specific surface area of the resultant SNCs significantly. This work provides a viable strategy to promote the doping of sulfur into carbon materials during the pyrolysis process.  相似文献   

8.
Hybrid systems based on graphene and semiconductor quantum dots are prospective materials for optoelectronics and photonics. In this work, electronic structure and dielectric properties of small particles of cadmium sulfide on the surface of graphene were studied using the density functional theory. The optical spectrum of this hybrid structure depends on the orientation of the nanoparticle relative to graphene due to the interaction between electrons of sulfur atoms on the surface of the CdS particle and π-orbitals of carbon atoms.  相似文献   

9.
杨裕生 《电化学》2020,26(4):443
本文回顾了22年来作者的电化学储能研究活动,共分三个部分. 第一部分叙述高比能量、高比功率储能器件研究,包括锂硫电池研究(硫复合正极材料、锂硫电池制作、锂硼合金作为锂硫电池负极、硫-锂离子电池新体系)、超级电容器研究(超级活性炭、以酚醛树脂为原料制备电容炭、碳纳米管阵列中寄生准电容储能材料、氧化镍干凝胶准电容储能材料、归纳出电容炭材料的性能要求、电容器研制、确定“第四类”超级电容器)、锂离子电池研究(锂离子电池与可再生燃料电池的对决、双变价元素正极材料、磷酸钴锂正极材料、高功率锂离子电池的制作). 第二部分叙述规模储能电池研究,包括液流电池新体系研究(蓄电与电化学合成的双功能液流电池、全金属化合物单液流电池、有机化合物正极的单液流电池)、致力于振兴铅酸电池(推广铅蓄电池新技术、铅炭电池的研究、铅酸电池新型板栅的研究),储能电池(站)的经济效益计算方法. 第三部分叙述电动汽车发展路线研究,包括氢能燃料电池电动汽车、纯电动汽车与混合动力汽车、对我国电动汽车发展路线的建议、力争电动汽车补贴的合理化、坚守电动汽车“节能减排”宗旨、提出“发电直驱电动车”. 最后的结束语谈了三点感悟.  相似文献   

10.
There is currently intense research on sulfur/carbon composite materials as positive electrodes for rechargeable batteries. Such composites are commonly prepared by ball milling or (melt/solution) impregnation to achieve intimate contact between both elements with the hope to improve battery performance. Herein, we report that sulfur shows an unexpected “spillover” effect when in contact with porous carbon materials under ambient conditions. When sulfur and porous carbon are gently mixed in a 1:1 mass ratio, complete surface coverage takes place within just a few days along with the loss of the sulfur bulk properties (crystallinity, melting point, Raman signals). Sulfur spillover also occurs in the presence of a liquid phase. Consequences of this phenomenon are discussed by considering a sodium–sulfur cell with a solid electrolyte membrane.  相似文献   

11.
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times.  相似文献   

12.
This review article focuses on the structures and properties of novel hybrid nanocarbon materials, which are created by incorporating atoms and molecules into the hollow spaces of carbon nanotubes (CNTs); thus they are called nanopeapods. After dealing with synthesis procedures, we discuss the structures and electronic properties of the hybrid materials based on high‐resolution transmission electron microscopy (HRTEM), electron energy‐loss spectroscopy (EELS), X‐ray and electron diffraction, scanning tunneling microscopy (STM), and field‐effect transistor transport measurements. Utilization of the low‐dimensional nanosized spaces of CNTs to produce novel low‐dimensional nanocluster, nanowire, and nanotube materials is also discussed.  相似文献   

13.
《中国化学快报》2020,31(9):2219-2224
Sodium ion hybrid capacitors are of great concern in large-scale and cost-effective electrical energy storage owing to their high energy and power densities, as well as natural abundance and wide distribution of sodium. However, it is difficult to find a well-pleasing anode material that matches the high-performance cathode materials to achieve good energy and power output for sodium ion hybrid capacitors. In this paper, nitrogen and sulfur co-doped nanotube-like carbon prepared by a simple carbonization process of high sulfur-loaded polyaniline nanotubes is introduced as the anode. The assembled sodium ion half cell based on the optimal nanotube-like carbon delivers a high reversible capacity of ∼304.8 mAh/g at 0.2 A/g and an excellent rate performance of ∼124.8 mAh/g at 10 A/g in a voltage window of 0.01–2.5 V (versus sodium/sodium ion). For the hybrid capacitors assembled using the optimal nanotube-like carbon as the anode and high-capacity activated carbon as the cathode, high energy densities of ∼100.2 Wh/kg at 250 W/kg and ∼50.69 Wh/kg at 12,500 W/kg are achieved.  相似文献   

14.
Chicken waste and chicken waste blended samples with selected high sulfur coal were used as raw materials for activated carbon preparation. Raw materials were subjected to the preparation procedures of carbonization in a nitrogen atmosphere and activation in a steam atmosphere. The basic properties of the raw materials, chars and activated carbons were investigated by components analysis, surface porosity and thermogravimetric analysis. Two activated carbon samples were selected for elemental mercury capture tests in a lab-scale drop tube reactor with air flow.

The current results show that chicken waste is not a suitable raw material for activated carbon production due to its higher contents of volatile matter and ash. Coal can be used as a carbon carrier for improving the carbon content of products. A low-cost activated carbon was prepared by a co-process of chicken waste and coal, and examining the high capture efficiency for elemental mercury. It suggests that the coal provides a carbon carrier or trap for some active species, such as chlorine released from the chicken waste. These active species would likely provide or create the adsorptive sites on the surface of activated carbon for elemental mercury.  相似文献   


15.
Chicken waste and chicken waste blended samples with selected high sulfur coal were used as raw materials for activated carbon preparation. Raw materials were subjected to the preparation procedures of carbonization in a nitrogen atmosphere and activation in a steam atmosphere. The basic properties of the raw materials, chars and activated carbons were investigated by components analysis, surface porosity and thermogravimetric analysis. Two activated carbon samples were selected for elemental mercury capture tests in a lab-scale drop tube reactor with air flow.The current results show that chicken waste is not a suitable raw material for activated carbon production due to its higher contents of volatile matter and ash. Coal can be used as a carbon carrier for improving the carbon content of products. A low-cost activated carbon was prepared by a co-process of chicken waste and coal, and examining the high capture efficiency for elemental mercury. It suggests that the coal provides a carbon carrier or trap for some active species, such as chlorine released from the chicken waste. These active species would likely provide or create the adsorptive sites on the surface of activated carbon for elemental mercury.  相似文献   

16.
This review surveys published data to generalize methods for the determination of sulfur mustard and its metabolites in various media. Attention is focused on biological materials. Data on the toxicokinetics and metabolism of sulfur mustard are cited, and the problem of choosing a biomarker for the indication of sulfur mustard poisoning is considered.  相似文献   

17.
Sodium‐ion batteries (SIBs) have attracted much attention for application in large‐scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large‐scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high‐performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high‐performance anode materials for SIBs.  相似文献   

18.
Lithium–sulfur (Li–S) batteries have been recognized as promising substitutes for current energy‐storage technologies owing to their exceptional advantage in energy density. The main challenge in developing highly efficient and long‐life Li–S batteries is simultaneously suppressing the shuttle effect and improving the redox kinetics. Polar host materials have desirable chemisorptive properties to localize the mobile polysulfide intermediates; however, the role of their electrical conductivity in the redox kinetics of subsequent electrochemical reactions is not fully understood. Conductive polar titanium carbides (TiC) are shown to increase the intrinsic activity towards liquid–liquid polysulfide interconversion and liquid–solid precipitation of lithium sulfides more than non‐polar carbon and semiconducting titanium dioxides. The enhanced electrochemical kinetics on a polar conductor guided the design of novel hybrid host materials of TiC nanoparticles grown within a porous graphene framework (TiC@G). With a high sulfur loading of 3.5 mg cm?2, the TiC@G/sulfur composite cathode exhibited a substantially enhanced electrochemical performance.  相似文献   

19.
Due to the high specific capacity, low cost, and environmental friendliness, lithium-sulfur batteries hold great potential to become the mainstay of next-generation energy storage system. Regarding the composition of sulfur/carbon in cathode, flammable organic liquid electrolyte, and lithium metal anode, great concerns about the safety have been raised. Hence solid-electrolyte-based lithium-sulfur batteries, as one alternative route for safe batteries, are highly interested. This review highlights the recent research progress of lithium-sulfur batteries with solid electrolytes. Both sulfide solid electrolytes and oxide solid electrolytes are included.The sulfide solid electrolytes are mainly employed in all-solid-state lithium-sulfur batteries, while the oxide solid electrolytes are applied in hybrid electrolyte for lithium-sulfur batteries. The challenges and perspectives in this field are also featured on the basis of its current progress.  相似文献   

20.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号