首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Photoabsorption spectra are calculated for the magic number clusters, (CdSe)(3) and (CdSe)(6), using an all-electron mixed basis GW scheme with the excitonic effect incorporated by solving the Bethe-Salpeter equation (BSE). The GW+BSE calculation provided clear size dependence of the optical gap as expected, while magnitude of the gap is overestimated compared to available experimental one. The gap is found very similarly overestimated when using the local density approximation (LDA) within the density functional theory because accidental error cancellation occurs between the significantly underestimated LDA gap and the excitonic effect neglected therein. The excitonic states are described by superposition of many one-particle states that would not be properly described within a one-particle theory, as clearly visualized in the plot of the exciton wavefunctions.  相似文献   

3.
Transition Metal substituted Gallanes: Synthesis and X-Ray Structures of [(CO)4CoGaEt2(NC7H13)], [(PMe3)(CO)3CoGaCl2(NMe3)], [(CO)4CoGaCl3]K, and [(CO)5MnGaEt2(NC7H13)] The transition metal substituted gallanes [(CO)5MnGaEt2(NC7H13)] ( 1 ), [(PMe3)(CO)3CoGaCl2 · (NMe3)] ( 2 ), [(CO)4CoGaEt2(NC7H13)] ( 3 ), and [(CO)4CoGaCl3]K ( 4 ) were obtained by the reaction of the potassium/sodium salts of the manganese- and cobaltcarbonylmetallates with the chlorogallium species ClGaEt2(NC7H13), Cl3Ga(NMe3), and GaCl3. The structures were established by single crystal X-ray analysis 1 : space group P21/c (I.T.-No.: 14); Z = 4; a = 1425.4(2) pm, b = 1007.4(1) pm, c = 1429.9(3) pm; β = 113.92(1)°; 2 : space group P21/m (I.T.-No.: 11); Z = 2; a = 746.1(1) pm, b = 1131.2(1) pm, c = 1061.5(1) pm; β = 101.87(1)°; 3 : space group P21/c (I.T.-No.: 14); Z = 8; a = 1405.9(2) pm, b = 1786.2(2) pm, c = 1430.9(2) pm; β = 91.47(1)°; 4 : space group P21/c; Z = 4; a = 1185.7(1) pm, b = 895.4(1) pm, c = 1144.7(3) pm; β = 106.47(2)°. The model compounds [{L′(CO)3Co}GaX2L] (L′ = CO, PH3; L = NH3, X = H, Cl) with polar σ(Co–Ga) bonds and the effect of the substituent on the bond length are characterized with DFT-calculations.  相似文献   

4.
Water-soluble CdSe nanocrystal/poly(allylamine) clusters with sizes ranging between 50 and 200 nm were prepared using 3-amino-1-propanol as a compatibilizing agent. Photoluminescence (PL) quantum yields (QY) up to 20% were achieved in water without the need to clad these CdSe nanocrystals (NCs) with higher band gap inorganic layers. The polymer-to-nanocrystal ratio plays an important role in the internal structure and stability of these polymer/NC clusters, as determined by static and dynamic light scattering in conjunction with PL studies. These results were modeled by using an effective-mass approximation and perturbation theory on the change in dielectric constant of the immediate NC environment. The time evolution of the average cluster radius of gyration and hydrodynamic radius revealed that a higher polymer-to-NC ratio leads to increased PL stability and QY. This is a result of a denser cluster configuration, which affords improved NC passivation. Increasing the ionic strength results in greater nanocluster compaction and higher PL QYs. Decreasing the pH value below 12 resulted in dramatic reduction in PL brightness, despite cluster densification, due to partial ionization and dissolution of the amine-based NC surface-capping agents.  相似文献   

5.
A novel TROSY (transverse relaxation-optimized spectroscopy) element is introduced that exploits cross-correlation effects between (13)C-(13)C dipole-dipole (DD) coupling and (13)C chemical shift anisotropy (CSA) of aromatic ring carbons. Although these (13)C-(13)C effects are smaller than the previously described [(13)C,(1)H]-TROSY effects for aromatic (13)C-(1)H moieties, their constructive use resulted in further transverse relaxation-optimization by up to 15% for the resonances in a 17 kDa protein-DNA complex. As a practical application, two- and three-dimensional versions of the HCN triple resonance experiment for obtaining ribose-base and intrabase correlations in the nucleotides of DNA and RNA (Sklenar, V.; Peterson, R. D.; Rejante, M. R.; Feigon, J. J. Biomol. NMR 1993, 3, 721-727) have been implemented with [(13)C,(1)H]- and [(13)C,(13)C]-TROSY elements to reduce the rate of transverse relaxation during the polarization transfers between ribose (13)C1' and base (15)N1/9 spins, and between (13)C6/8 and N1/9 within the bases. The resulting TROSY-HCN experiment is user-friendly, with a straightforward, robust experimental setup. Compared to the best previous implementations of the HCN experiment, 2-fold and 5-fold sensitivity enhancements have been achieved for ribose-base and intrabase connectivities, respectively, for (13)C,(15)N-labeled nucleotides in structures with molecular weights of 10 and 17 kDa. TROSY-HCN experiments should be applicable also with significantly larger molecular weights. By using modified TROSY-HCN schemes, the origins of the sensitivity gains have been analyzed.  相似文献   

6.
7.
Type-II band engineered quantum dots (CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures) are described. The optical properties of these type-II quantum dots are studied in parallel with their type-I counterparts. We demonstrate that the spatial distribution of carriers can be controlled within the type-II quantum dots, which makes their properties strongly governed by the band offset of the comprising materials. This allows access to optical transition energies that are not restricted to band gap energies. The type-II quantum dots reported here can emit at lower energies than the band gaps of comprising materials. The type-II emission can be tailored by the shell thickness as well as the core size. The enhanced control over carrier distribution afforded by these type-II materials may prove useful for many applications, such as photovoltaics and photoconduction devices.  相似文献   

8.
Oxidized human [2Fe-2S] ferredoxin has a notably slow electronic relaxation rate, which precludes the observation of signals from nuclei near the iron-sulfur cluster by conventional 2D or 3D methods that utilize proton detection. We have demonstrated the utility of (13)C[(13)C]CT-COSY in identifying connectivity information from fast relaxing carbon nuclei near the paramagnetic center, including those from residues that ligate the metal center.  相似文献   

9.
N-acetyl-neuraminic acid (Neu5Ac, 2) was prepared enzymatically containing single sites of (13)C-enrichment at C1, C2, and C3. Aqueous solutions of the three (13)C isotopomers were studied by (1)H and (13)C NMR spectroscopy at p(2)H 2 and pH 8 to obtain J(CH) and J(CC) values involving the labeled carbons. Experimental studies were complemented by DFT calculations of the same set of J-couplings in protonated and ionized structural mimics of 2 to determine how well theoretical predictions match the experimental findings in saccharides bearing ionizable functionality. Results show that: (a) (2)J(C2,H3ax/eq) values in 2 depend on anomeric configuration, thus complementing (3)J(C1,H3ax/eq) behavior, (b) J(CH) and J(CC) values involving C2 depend on anomeric configuration, the C1-C2 bond torsion, and solution pH, and (c) long-range (4)J(C2,H7) is sensitive to glycerol side-chain conformation. Intraring J(HH) and most (2)J(CH), (3)J(CH), (2)J(CC), and (3)J(CC) involving C1-C3 of 2 appear largely unaffected by the ionization state of the carboxyl group. In vacuo and solvated DFT calculations of geminal and vicinal J(CH) and J(CC) values are similar and reproduce the experimental data well, but better agreement with experiment was observed for (1)J(C1,C2) in the solvated calculations. The present work provides new information for future treatments of trans-glycoside couplings involving Neu5Ac residues by (a) providing new standard values of intraring J(CC) for coupling pathways that mimic those for trans-glycoside J(CC), (b) identifying potential effects of solution pH on trans-glycoside couplings inferred through the behavior of related intraring couplings, and (c) providing specific guidelines for more reliable DFT predictions of J(CH) and J(CC) values in ionizable saccharides.  相似文献   

10.
11.
The reaction of D-mannose and D-allose with [PtMe(3)(Me(2)CO)(3)]BF(4) 1 in acetone affords complexes [PtMe(3)L]BF(4) 5 and 6 (5, L = alpha-D-mannofuranose; 6, L = beta-D-allofuranose). The coordination mode and conformation of the carbohydrate ligands in 5 and 6 in acetone-d(6) have been determined from an analysis of J(HH), J(CH), and J(CC) in complexes formed using site-specific (13)C-labeled D-mannose and D-allose. These coupling data are compared to those measured in (13)C-labeled complex [PtMe(3)L]BF(4) 2 (L = 1, 2-O-isopropylidene-alpha-D-glucofuranose) and 1, 2-O-isopropylidene-alpha-D-glucofuranose 3, whose solid-state structures are known, and in (13)C-labeled 1,2;5, 6-di-O-isopropylidene-alpha-D-glucofuranose 4. The preferred furanose ring conformations in 2 and 5 are very similar ((3)E/E(4) and E(4)/(o)E/E(1), respectively; eastern hemisphere of the pseudorotational itinerary), with platinum coordination involving O3, O5, and O6 of the saccharide. In contrast, the furanose ring of 6 prefers an (4)E/E(o)/(1)E geometry (western hemisphere of the pseudorotational itinerary) resulting from altered complexation involving O1, O5, and O6. Couplings within the exocyclic fragments of 2, 5, and 6 also support the existence of two different platinum coordination modes. In addition to establishing the structures and conformations of 2, 5, and 6 in solution, one-, two-, and three-bond J(CH) and J(CC) observed in these complexes provide new insights into the effect of structure and conformation on the magnitudes of these couplings in saccharides. Weak platinum(IV) complexation with the carbohydrate conformationally restricts the furanose and exocyclic fragment without introducing undesirable structural strain, thereby allowing more reliable correlations between structure and coupling magnitude.  相似文献   

12.
A method of fabricating sol-gel quantum dot (QD) films is demonstrated, and their optical, structural and electrical properties are evaluated. The CdSe(ZnS) xerogel films remain quantum confined, yet are highly conductive (10(-3) S cm(-1)). This approach provides a pathway for the exploitation of QD gels in optoelectronic applications.  相似文献   

13.
14.
On Tris[(trialkylphosphine)gold(I)]oxonium Tetrafluoroborates and Tris[(triphenylphosphine)gold(I)]sulfonium Tetrafluoroborate [Et3PAu]+BF, obtained from Et3PAuCl and AgBF4 in tetrahydrofuran, reacts with KOH (molar ratio 3:1) to give the oxonium salt [(Et3P)Au]3O+BF ( 1 ). The homologous [t(Bu3P)Au]3O+BF ( 2 ) is generated similarly from tBu3PAuCl and Ag2O in the presence of NaBF4 in THF. The composition and identity of these two first tris[(tri alkyl phosphine)gold(I)]oxonium salts have been confirmed by analytical and spectroscopic data. The compounds are useful aurating agents. From the corresponding triphenylphosphine complex and (Me3Si)2S quantitative yields of the sulfonium salt [(Ph3P)Au]3S+BF ( 3 ) are obtained. Its crystal structure features monomeric cations, and in these small Au? S? Au angles indicate significant metal-metal bonding.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号