首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

2.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

3.
Summary The preparation and characterization of CuII, CoII, NiII and HgII complexes containing 1,4-diphenylthiosemicarbazide (DPhTSC) of the type [Cu(DPhTSC-H)X.H2O]nH2O (X= Cl, Br or Ac; n=0 or 1) · [M(DPhTSC-H)2yH2O] (M=CoII or NiII; y=0 or 1) and [Hg(DPhTSC)Cl2]2 H2O and [Cu(D-PhTSC)2SO4]H2O are reported. The stereochemistry of the complexes have been studied with the help of magnetic and electronic measurements. The anomalous magnetic moments observed in all cases have been explained. The i.r. spectral studies have been used to determine the bonding sites in the complexes.  相似文献   

4.
Summary Vanillin thiosemicarbazone (VTSC) has been used to isolate the complexes of the types [M(VTSC)2(H2O)2]X2 (M=MnII, FeII, CoII, or NiII and X=Cl) and [M(VTSC)X2]H2O (M=CuII, ZnII, CdII or HgII and X=Cl). Probable structures of these complexes are suggested on the basis of elemental analysis, molar conductance, magnetic moment and electronic and i.r. spectral data. The fungicidal activity of VTSC and the isolated complexes has been evaluated on pathogenic fungi,Alternaria (Sp.),Paecilomyces (Sp.) andPestalotia (Sp.).On leave from the University of Myosore.  相似文献   

5.
Summary Pyridine-4-carboxaldehyde thionicotinoyl hydrazone (4-PTNH) forms 1:1 adducts with metal(II) halides and 1:2 complexes (metal to ligand) with metal(II) thiocyanates. Magnetic and spectral studies indicate polymeric octahedral geometry for M(4-PTNH)X2 (M=CoII or CuII, X=Cl; M=NiII, X=Cl, Br or I), five coordinate geometry for Co(4-PTNH)X2 (X=Br or I) and octahederal geometry for [M(4-PTNH)2(NCS)2] (M=CoII or NiII). I.r. spectral studies show that 4-PTNH acts as a neutral bidentate ligand in all the complexes, the bonding sites being the thione sulphur and azomethine nitrogen.  相似文献   

6.
Summary New complexes of the general formulae [MLA(H2O)2]-Cl2 (M=Ni or Cu), [MLAX2] (M=Co or Cu; X=Cl or Br), [NiLABr2]·H2O, [MLA] [MCl4] (M=Pd or Pt), [NiLB(H2O)2]Cl2·2H2O, [MLBCl2] (M=Co, Ni, Cu, Pd or Pt; X=Cl or Br) and [MLB] [MCl4] (M=Pd or Pt), where LA=N,N-ethylenebis(2-acetylpyridine imine) and LB=N, N-ethylenebis(2-benzoylpyridine imine), have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, t.g./d.t.g. methods, magnetic susceptibilities and spectroscopic (i.r., far-i.r., ligand field,1Hn.m.r.) studies. Monomeric pseudo-octahedral stereochemistries for the CoII, NiII and CuII complexes andcis square planar structures for the compounds [MLBX2] (M=Pd or Pt; X=Cl or Br) are assigned in the solid state. The molecules LA and LB behave as tetradentate chelate ligands in the CoII, NiII, CuII and Magnus-type PdII and PtII complexes, bonding through both the pyridine and methine nitrogen atoms. A bidentateN-methine coordination of the Schiff base LB is assigned in the [MLBX2] complexes (M=Pd or Pt; X=Cl or Br). The anomalous magnetic moment values of the CoII complexes are discussed.  相似文献   

7.
Summary CuII, NiII, CoII, ZnII and PdII complexes of tridentate Schiff base ligands derived from the condensation of benzoic acid hydrazides with 2-aminonicotinaldehyde have been prepared and characterized. For M=Cu, Ni, Co and Zn the complexes were formulated as [M(ligand)(H2O)X] (X=Cl, Br), with a distorted octahedral geometry and tridentate Schiff base ligands. The Pd complexes were formulated as Pd(ligand)Cl2, with square planar geometries and bidentate Schiff base ligands. The e.s.r. spectra of the CuII complexes are discussed.  相似文献   

8.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

9.
The synthesis of CoII, NiII, CuII and CdII complexes of 2-furfural 4-phenyl semicarbazone (FPSC) with stoichiometric formulae: [M(FPSC)2X2] (M = Co, Ni or Cu; X = Cl or Br), [CuCl2(FPSC)] and [(CdCl2)2(FPSC)] has been obtained for the first time. The complexes were characterized by elemental analysis, molar conductivity, magnetic measurements, i.r., far i.r. and electronic spectra. FPSC is deduced to act as a bidentate ligand in the CoII, NiII and CuII complexes and as a tetradentate one in [(CdCl2)2(FPSC)].  相似文献   

10.
The title complexes, [M(C5O5)(C12H8N2)2], with M = CoII, NiII and CuII, all lie across twofold rotation axes, around which two 1,10‐phenanthroline ligands are arranged in a chiral propeller manner. The CoII and NiII complexes are isostructural, with octa­hedral coordination geometry, while the local geometry of the CuII complex is severely distorted from octa­hedral.  相似文献   

11.
Summary The far-i.r. and Raman spectra of a closely related group ofpseudo-tetrahedral complexes of general formula [MX2EDM] are reported (M = CoII, NiII, CuII, ZnII; X = Cl or Br). EDM, ethylenedimorpholene, acts in these compounds as a bidentate nitrogen donor. The main skeletal vibrations are assigned under the approximate symmetry of theC 2v (MX2Y2) point group.  相似文献   

12.
Summary Tetrahalometallates of the type (Etmorphl1)21MX4 (M = Co11, Ni11 or Zn11 and with X = Cl, Br or l; M = CuII with X = CI or Br) and mixed tetrahalocuprates, Etmorphll)2[CUXmY4–m] (X = Cl; N' = 13r; m = 1,2,3) of theN-ethylmorpholinium cation were prepared and investigated by means of spectroscopic and magnetic measurements. While the cobalt(II), nickel(II) and zinc(II) complexes appear to be essentially, tetrahedral, the copper(II) complexes are discussed on the basis of a distorted ('flattened') tetrahedral symmetry. The electronic spectra of the complexes are assigned on this basis. The far i.r. spectra of the complexes show bands which are unambiguously assignable to the metal-halogen stretching modes. The effects of the counter cation on the geometry around the metal ion, compared with that of the morpholinium and piperidinium cations, are discussed in relation to the pKa of the amine.  相似文献   

13.
Summary The metal complexes of the type [M(SB)2(H2O)2] and [M(SB)2][where M = MnII, CoII, NiII or CuII, M = ZnII CdII, HgII and PbII and SBH = 2-(2-hydroxyacetophenone)imino-5-(p-anisyl)-1,3,4-oxadiazole] have been prepared and characterised by elemental analyses, thermal analyses, magnetic measurements, electronic and infrared spectral studies. The complexes [M(SB)2(H2O)2] possess octahedral structures, whereas complexes [M(SB)2] are tetrahedral. The crystal field parameters of the CoII and NiII complexes are also calculated.  相似文献   

14.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

15.
Summary N-Cyano-N-methyl-N(2-[(5-methyl-1H-imidazol-4-yl)-methylthio] ethyl) guanidine cimetidine (CM), complexes with CoII, NiII and CuII are described. The compounds are of stoichiometry [M(CM)2]SO4 · nH2O [M = CoII, NiII or CuII; n = 3,3 or 4, respectively], [M(CM)2](ClO4)2 [M = CoII or NiII], [M(CM)2]Cl2 · nH2O [M=CoII, NiII or CuII; n = 1, 2, or 2, respectively] and [Cu(CM)SO4] · 2H2O. The electronic spectra of the compounds in solid state, magnetic susceptibilities and i.r. and e.p.r. spectra were studied. Octahedral environments are proposed for the complexes: [M(CM)2]SO4·nH2O, [M(CM)2](ClO4)2, [Ni(CM)2]Cl2 · 2H2O, [Cu(CM)2]Cl2 · 2H2O and [Cu(CM)SO4] · 2H2O and a tetrahedral structure for [Co(CM)2]Cl2 · H2O.  相似文献   

16.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

17.
A novel series of 16-membered binuclear complexes of octaazatetraimine ligand, [M = MnII, CoII, NiII, CuII and ZnII; X = Cl or NO3] have been synthesized by metal template condensation reactions of o-phenylenediamine with N,N′-diacetylhydrazine in 1:1:1 molar ratio in methanol. The proposed stoichiometry and the bonding of the macrocyclic moiety to metal ions along with the overall stereochemistry have been derived from the results of elemental analyses, magnetic susceptibility, conductivity data and the spectral data revealed from FT-IR, , ESI mass, UV–visible studies. An octahedral geometry has been envisaged for MnII, CoII, and NiII complexes while a slight distortion in octahedral geometry has been noticed for CuII complexes. The low conductivity data of all the complexes suggest their non-ionic nature.  相似文献   

18.
Summary Metal(II) bis-chelates of the type ML2nB [M=CoII, NiII, and CuII, L=1-hydroxy-2-naphthyl(4-X-styryl)ketone, (X=H, Me, Cl, MeO), B=H2O, Py; n=0, 2] have been prepared and characterised by element analyses, i.r., ligand field spectra, magnetic moments and thermal studies. The copper(II) chelates are anhydrous monomers oftrans-square-planar configuration. The cobalt(II) and nickel(II) chelates, obtained as dihydrates, possess a high-spintrans-octahedral structure. Their anhydrides are polymeric. All the pyridine adducts have high-spintrans-octahedral geometry. The (M–O), order, namely Cu >Ni>Co, parallels the Irving-Williams order. The weak ligand field strength of 1-hydroxy-2-naphthyl(4-X-styryl)ketones is ascribed to inhibition of extensive conjugation arising from deviation of the naphthoyl group from planarity.  相似文献   

19.
Summary 3-Isonicotinamido-rhodanine (HINRd) reacts with metal ions to yield complexes of the types M(INRd)OH·nH2O (where M=CoII, NiII, ZnII or CdII and n=1 or 2), Cu(HINRd)X·2H2O (where X=Cl or Br), Pd(HINRd)Cl2 and Cd(HINRd)X2·H2O (where X=Cl or Br), depending on the metal salt used and the reaction conditions. The metal complexes have been characterized by elemental analysis, molar conductivities, molecular weights, magnetic susceptibility, visible, and i.r. studies. The i.r. spectra show that HINRd binds in a bidentate or monodentate manner. The spectral and magnetic studies suggest a tetrahedral arrangement for CoII, octahedral for NiII and square-planar for PdII. HINRd behaves as a reducing agent towards CuII chloride or bromide forming diamagnetic CuI complexes.  相似文献   

20.
Complexes of the type [M(tren)(abpt)](NO3)2(H2O)n (1–6) [M = MnII, FeII, CoII, CuII, ZnII (n = 2), NiII (n = 2.25), tren = tris(2-aminoethyl)amine, and abpt = 4-amino-3,5-bis(pyridin-2yl)-1,2,4 triazole] have been prepared. The bonding mode and overall geometry of the complexes have been deduced by elemental analyses, molar conductance values, spectral studies (obtained from FT-IR), 1H-n.m.r., electronic spectral analyses and magnetic susceptibility measurements. A detailed molecular structure of complex (4) has been determined by single X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号