首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
邵帅  董磊  纪宽  李昌诚 《化学通报》2023,86(9):1053-1059
海洋污损生物是海洋资源开发首先要面对的问题。防污涂料是防除海洋污损生物的关键材料。传统的防污涂料虽然发展成熟,但以油性溶剂为介质,存在挥发性有机物(VOC)排放过高、环境污染严重的问题。不释放VOC的水性涂料符合绿色无污染的环保要求,是防污材料领域研究的热点。本文对最重要的四种水性防污涂料(污损释放型水性低表面能防污涂料、自抛光型水性防污涂料、污损阻抗型水凝胶海洋防污涂料、强碱释放型水性硅酸盐防污涂料)从防污机理、制备方法和存在的问题等几个方面进行了综述,并对水性防污涂料的发展趋势进行了展望。  相似文献   

2.
综述了海洋防污高分子材料与技术的发展现状.简介了海洋生物污损的形成过程,概述了杀生防污涂料、污损可脱附性涂层、阻止附着型防污技术以及其它现存的防污方法,并在此基础上提出了一种新的海洋防污高分子材料的综合设计方案,最后展示了有关海洋防污材料研究的最新成果.  相似文献   

3.
海洋生物污损给人类海洋生产和运输活动带来了严重的影响,涂覆防污涂料是解决这一问题根本办法。近年来大量使用的有机锡和氧化亚铜涂料,对海洋生物的生存环境造成了危害。因此,研究高效、低毒、绿色的海洋防污涂料成为目前发展的主要方向。本文综述了当前绿色环保型防污涂料的发展状况及研究进展,重点介绍了含氟、含硅低表面能防污涂料、天然产物防污涂料和新型无锡自抛光防污涂料的发展状况,并分析了今后绿色海洋防污涂料的发展趋势。  相似文献   

4.
构筑聚合物抗污涂层表面是解决生物污损的有效策略. 聚合物具有耐酸碱性和易于功能化及表面修饰等优点, 聚合物抗污涂层在降低生物污损对材料的影响和减少经济损失中发挥着重要作用. 本文综合评述了聚合物抗污涂层的各种研究策略和研究进展, 介绍了相关新型聚合物抗污涂层的成果, 并展望了该领域面临的挑战.  相似文献   

5.
以烯丙基聚乙二醇(APEG)、甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为共聚物单体合成了含聚乙二醇(PEG)的羟基丙烯酸预聚物(BOH),该预聚物再与α,ω-三乙氧基硅烷封端的聚二甲基硅烷低聚物(TSU)和α,ω-三乙氧基硅烷封端的全氟聚醚低聚物(PFU)通过缩合反应制得含有PEG的氟硅改性丙烯酸交联网络防污涂层.通过核磁共振氢谱(~1H-NMR)、红外光谱(FTIR)对聚合物的结构进行了表征.通过原位纳米测试系统、接触角测试和生物评价等表征方法,探讨了树脂中TSU,PFU和BOH配比对表面能、弹性模量及其生物防污性能的影响.结果表明兼具氟硅低表面能性和PEG抗蛋白吸附性能的交联网络涂层TFS-BOH-B具有好的防污性能,且随着TSU和PFU含量增加,防污性能提高.  相似文献   

6.
船舶由于在航行时受到各种阻力,消耗了大量能量,增加了航行成本。船舶水下阻力的来源可以大致分为船体阻力和生物质附加阻力。本文基于对阻力和生物质黏附形成过程的分析,介绍了水下减阻领域的进展突破,总结了具有减阻、抗污性质的涂层研究情况,从超疏水、超亲水减阻材料和自抛光防污涂料、低表面能抗黏附材料、防污剂等方面,对其中相关的科学问题和解决方法进行了综述。  相似文献   

7.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为,在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响.根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为,解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因:(1)相比PDMS涂层,蛋白质与PEG涂层的结合能量较低,使其结合更加疏松;(2)蛋白质吸附到材料表面要克服表面水化层分子引起的能障,PEG表面与水分子之间结合紧密,结合水难于脱附,造成蛋白质在其表面的吸附需要克服更高的能量,不利于蛋白质的吸附.  相似文献   

8.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为, 在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响. 根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为, 解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因: (1) 相比PDMS涂层, 蛋白质与PEG涂层的结合能量较低, 使其结合更加疏松; (2) 蛋白质吸附到材料表面要克服表面水化层分子引起的能障, PEG表面与水分子之间结合紧密, 结合水难于脱附, 造成蛋白质在其表面的吸附需要克服更高的能量, 不利于蛋白质的吸附.  相似文献   

9.
低表面能聚合物材料是低表面能材料中重要的一类.这类材料性能独特,用途广泛,尤其体现在涂料领域,用作防污涂层.目前,低表面能聚合物主要有氟碳树脂、有机硅树脂及氟硅树脂三种.有关这三种材料的合成研究十分活跃,出现了众多的合成研究报道.按合成过程对应的聚合机理划分,主要有基团转移聚合、阳离子聚合、阴离子聚合、自由基聚合、活性官能团间的反应.本文按聚合机理划分方法对低表面能聚合物近期的合成研究进展进行综述.  相似文献   

10.
金属是人类社会赖以生存和发展的重要物质基础,是构成现代文明社会的支撑材料,增加金属材料的特殊性能,拓宽金属材料的应用范围,已经成为自然科学交叉研究的热点。受自然界启发,研究人员通过探究猪笼草口缘区的超滑行为,在微/纳米结构基底中注入低表面能润滑液,形成固液复合涂层,设计并制备出具有特殊润湿性的仿生超滑表面,显现出优异的自愈、防冰、防污、耐腐蚀、抗生物黏附、自清洁等性能。该方法为金属基体上设计构建仿生超滑表面,并实现其表面多功能性,进而为其在海洋防污、生物医疗、航空航天、制冷、工业生产等领域实现更广泛的应用提供了可能。本文从仿生超滑表面的设计原理、制备工艺、金属基体仿生超滑表面的应用以及未来发展趋势和挑战四个方面对金属基体仿生超滑表面的研究进展进行了综述。  相似文献   

11.
Marine organisms such as plants, algae or small animals can adhere to surfaces of materials that are submerged in ocean. The accumulation of these organisms on surfaces is a marine biofouling process that has considerable adverse effects. Marine biofouling on ship hulls can cause severe fuel consumption increase. Investigations on antifouling polymers are therefore becoming important research topics for marine vessel operations. Antifouling polymers can be applied as coating layers on the ship hull, protecting it against the settlement and growth of sea organisms. Polyethylene glycol (PEG) is a hydrophilic polymer that can effectively resist the accumulation of marine organisms. PEG-based antifouling coatings have therefore been extensively researched and developed. However, the inferior stability of PEG makes it subject to degradation, rendering it ineffective for long-term services. Zwitterionic polymers have also emerged as promising antifouling materials in recent years. These polymers consist of both positively charged and negatively charged functional groups. Various zwitterionic polymers have been demonstrated to exhibit exceptional antifouling properties. Previously, surface characterizations of zwitterionic polymers have revealed that strong surface hydration is critical for their antifouling properties. In addition to these hydrophilic polymers, amphiphilic materials have also been developed as potential antifouling coatings. Both hydrophobic and hydrophilic functional groups are incorporated into the backbones or sidechains of these polymers. It has been demonstrated that the antifouling performance can be enhanced by precisely controlling the sequence of the hydrophobic-hydrophilic functionalities. Since biofouling generally occurs at the outer surface of the coatings, the antifouling properties of these coatings are closely related to their surface characteristics in water. Therefore, understanding of the surface molecular structures of antifouling materials is imperative for their future developments. In this review, we will summarize our recent advancements of antifouling material surface analysis using sum frequency generation (SFG) vibrational spectroscopy. SFG is a surface-sensitive technique which can provide molecular information of water and polymer structures at interfaces in situ in real time. The antifouling polymers we will review include zwitterionic polymer brushes, mixed charged polymers, and amphiphilic polypeptoids. Interfacial hydration studies of these polymers by SFG will be presented. The salt effect on antifouling polymer surface hydration will also be discussed. In addition, the interactions between antifouling materials and protein molecules as well as algae will be reviewed. The above research clearly established strong correlations between strong surface hydration and good antifouling properties. It also demonstrated that SFG is a powerful technique to provide molecular level understanding of polymer antifouling mechanisms.  相似文献   

12.
Biofouling is one of the most difficult problems in the field of marine engineering. In this work, molecular dynamics simulation was used to study the adsorption process of mussel protein on the surface of two antifouling films—hydrophilic film and hydrophobic film—trying to reveal the mechanism of protein adsorption and the antifouling mechanism of materials at the molecular level. The simulated conclusion is helpful to design and find new antifouling coatings for the experiments in the future.  相似文献   

13.
In an attempting to find new biomaterials for mammalian cell culture, PHEMA derivatives with ester side groups are synthesized by one-step polymer-analogous reaction. These polymers show excellent antifouling properties against S. epidermidis and P. aeruginosa while their cytotoxicity and proliferation activity for HDF cell are on a similar level as commercially available TCPS. The interesting bioadhesion property is systematically correlated with surface properties of the PHEMA derivatives.  相似文献   

14.
A nanosized coating was designed to reduce fouling on the surface of a new type of cochlear implant relying on optoacoustic stimulation. This kind of device imposes novel design principles for antifouling coatings, such as optical transparency and resistance to significant constant bending. To reach this goal we deposited on poly(dimethylsiloxane) a PEO-based layer with negligible thickness compared to the curvature radius of the cochlea. Its antifouling performance was monitored upon storage by quartz crystal microbalance, and its resistance upon bending was tested by fluorescence microscopy under geometrical constraints similar to those of implantation. The coating displayed excellent antifouling features and good stability, and proved suitable for further testing in real-environment conditions.  相似文献   

15.
Biofouling is a major problem facing the marine industry. Since toxic antifouling coatings were banned globally due to their negative impacts on the marine environment, the development of environmental-friendly and efficient antifouling coatings has been identified as a pressing need. As an alternative, the antifouling coatings inspired by corals have attracted a great deal of attention over these years. within the marine environment, corals have evolved an excellent antifouling capability. There are five major antifouling strategies applied by corals, including natural antifoulants, foul release effect, sloughing effect, soft tentacles, and fluorescence effect. In this paper, a brief review is conducted to introduce the antifouling coatings inspired by the five strategies. Moreover, a discussion is conducted about the existing problems with the five strategies and the direction of their further development is indicated.  相似文献   

16.
Molecular design, fabrication, and properties of thin-film coatings based on poly(2-methyl-2-oxazoline) (PMOX) and its copolymers were investigated to tackle problem of marine and bacterial fouling prevention. The ultraviolet crosslinkable macromonomer poly(2-methyl-2-oxazoline) dimethylacrylate was synthesized by cationic ring-opening polymerization in a microwave reactor initiated by 1,4-dibromobutane. In order to study the charge effect of the PMOX coatings on the adhesion of fouling organisms, PMOX surfaces with negative, neutral, and positive ζ-potential values were prepared by copolymerization with the positively charged monomer [2-(methacryloyloxy)-ethyl]trimethylammonium chloride. The coatings were stable in sea water for at least 1 month without significant reduction in the film thickness. The marine antifouling activity was evaluated against barnacle cyprids Amphibalanus amphitrite and algae Amphora coffeaeformis. Results showed that PMOX coatings provide effective reduction of the settlement regardless of the molar mass and surface charge of the polymer. Bacterial adhesion test showed that PMOX coatings effectively reduce Staphylococcus aureus and Escherichia coli adhesion. Owing to its good stability and antifouling activity PMOX has a great potential as antifouling coating for marine antifouling applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 275–283  相似文献   

17.
This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic layer serves as an excellent platform for initiator attachment, and the zwitterionic polymer generated via subsequent SI-ATRP exhibits very good antifouling properties. Patterned polymer coatings can be obtained when the surface with covalently attached initiator was subjected to photomasked UV-irradiation, in which the C-Br bond that is present in the initiator was broken upon exposure to UV light. A further, highly versatile top-functionalization of the zwitterionic polymer brush was achieved by a strain-promoted alkyne-azide cycloaddition, without compromising its antifouling property. The attached bioligand (here: biotin) enables the specific immobilization of target proteins in a spatially confined fashion, pointing to future applications of this approach in the design of micropatterned sensing platforms on ITO substrates.  相似文献   

18.
Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation. Poly(ethylene glycol) (or PEG) containing polymers and zwitterionic polymers have been shown to be excellent antifouling materials. It is believed that their outstanding antifouling activity comes from their strong surface hydration. On the other hand, it is difficult to develop underwater glues, although adhesives with strong adhesion in a dry environment are widely available. This is related to dehydration, which is important for adhesion for many cases while water is the enemy of adhesion. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to investigate buried interfaces between mussel adhesive plaques and a variety of materials including antifouling polymers and control samples, supplemented by studies on marine animal (mussel) behavior and adhesion measurements. It was found that PEG containing polymers and zwitterionic polymers have very strong surface hydration in an aqueous environment, which is the key for their excellent antifouling performance. Because of the strong surface hydration, mussels do not settle on these surfaces even after binding to the surfaces with rubber bands. For control samples, SFG results indicate that their surface hydration is much weaker, and therefore mussels can generate adhesives to displace water to cause dehydration at the interface. Because of the dehydration, mussels can foul on the surfaces of these control materials. Our experiments also showed that if mussels were forced to deposit adhesives onto the PEG containing polymers and zwitterionic polymers, interfacial dehydration did not occur. However, even with the strong interfacial hydration, strong adhesion between mussel adhesives and antifouling polymer surfaces was detected, showing that under certain circumstances, interfacial water could enhance the interfacial bio-adhesion.

Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation.  相似文献   

19.
We develop a new process for the preparation of synergistic antifouling functional coatings on gold surfaces via a “grafting to” approach. The strategy includes a synthetic step of polymer brushes that consist of poly (ethylene glycol) (PEG) and zwitterionic side chains via a typical reversible-addition fragmentation chain transfer (RAFT) polymerization process, and a subsequent deposition of the polymer brushes onto a gold substrate. The presence of PEG and zwitterion chains on these polymer brush-coated gold surfaces has been proved to have a synergistic effect on the final antifouling property of the coating. PEG chains lower the electrostatic repulsion between zwitterionic polymer chains and increase their graft density on gold surfaces, while zwitterionic polymer effectively improves the antifouling property that is offered by PEG chains alone. Protein adsorption and cell attachment assays tests are conducted to confirm that this copolymer layer on gold surface has a pronounced resistance against proteins such as Bovine serum albumin and Lysozyme. Importantly, the antifouling property can be systematically adjusted by varying the molar ratio of PEG to zwitterionic chains in the final coating copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号