首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phase diagram of a series of poly(1,2‐octylene oxide)–poly(ethylene oxide) (POO–PEO) diblock copolymers is determined by small‐angle X‐ray scattering. The Flory–Huggins interaction parameter was measured by small‐angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non‐lamellar phases (hexagonal and gyroid) are observed near fPEO = 0.5, and the lamellar phase is observed for fPEO ≥ 0.5.

  相似文献   


2.
Well‐defined PEO‐b‐PMMA was prepared, initiated by macroinitiator PEO‐Br, by means of ATRP, where esterification of the terminal hydroxyl group of PEO with 2‐bromoisobutyryl bromide yielded a macroinitiator PEO‐Br. Highly ordered microporous films (hexagonal pattern) were constructed by emulsion micelles of such amphiphilic diblock copolymer formed from a solution with CHCl3/H2O/THF = 100:5:10 (v/v). We also constructed the microporous films using diblock copolymer by the current water‐assisted method.

  相似文献   


3.
Furfuryl glycidyl ether (FGE) represents a highly versatile monomer for the preparation of reversibly cross‐linkable nanostructured materials via Diels–Alder reactions. Here, the use of FGE for the mid‐chain functionalization of a P2VP‐b‐PEO diblock copolymer is reported. The material features one furan moiety at the block junction, P2VP68‐FGE‐b‐PEO390, which can be subsequently addressed in Diels–Alder reactions using maleimide‐functionalized counterparts. The presence of the FGE moiety enables the introduction of dyes as model labels or the formation of hetero‐grafted brushes as shell on hybrid Au@Polymer nanoparticles. This renders P2VP68‐FGE‐b‐PEO390, a powerful tool for selective functionalization reactions, including the modification of surfaces.

  相似文献   


4.
Poly(glycidyl methacrylate) (PGMA) was synthesized by the RAFT method in the presence of 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) chain transfer agent using different [GMA]/[CPDB] molar ratios. The living radical polymerization resulted in controlled molecular weights and narrow polydispersity indices (PDI) of ≈1.1. The polymerization of pentafluorostyrene (PFS) with PGMA as the macro‐RAFT agent yielded narrow PDIs of ≤1.2 at 60 °C and ≤1.5 at 80 °C. The epoxy groups of the PGMA block were hydrolyzed to obtain novel amphiphilic copolymer, poly(glyceryl methacrylate)‐block‐poly(pentafluorostyrene) [PGMA(OH)‐b‐PPFS]. The PGMA epoxy group hydrolysis was confirmed by 1H NMR and FTIR spectroscopy. DSC investigation revealed that the PGMA‐b‐PPFS polymer was amorphous while the PGMA(OH)‐b‐PPFS displayed a high degree of crystallinity.

  相似文献   


5.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


6.
We report the synthesis of a novel pH‐responsive amphiphilic block copolymer poly(dimethylaminoethyl methacrylate)‐block‐poly(pentafluorostyrene) (PDMAEMA‐b‐PPFS) using RAFT‐mediated living radical polymerization. Copolymer micelle formation, in aqueous solution, was investigated using fluorescence spectroscopy, static and dynamic light scattering (SLS and DLS), and transmission electron microscopy (TEM). DLS and SLS measurements revealed that the diblock copolymers form spherical micelles with large aggregation numbers, Nagg ≈ 30 where the dense PPFS core is surrounded by dangling PDMAEMA chains as the micelle corona. The hydrodynamic radii, Rh of these micelles is large, at pH 2–5 as the protonated PDMAEMA segments swell the micelle corona. Above pH 5, the PDMAEMA segments are gradually deprotonated, resulting in a lower osmotic pressure and enhanced hydrophobicity within the micelle, thus decreasing the Rh. However, the radius of gyration, Rg remains independent of pH as the dense PPFS cores predominate.

  相似文献   


7.
The 3‐miktoarm star‐shaped ABC copolymers of polystyrene–poly(ethylene oxide)–poly(ethoxyethyl glycidyl ether) (PS‐PEO‐PEEGE) and polystyrene–poly(ethylene oxide)–polyglycidol (PS‐PEO‐PG) with low polydispersity indices (PDI ≤ 1.12) and controlled molecular weight were synthesized by a combination of anionic polymerization with ring‐opening polymerization. The polystyryl lithium (PSLi+) was capped by EEGE firstly to form the functionalized polystyrene (PSA) with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, and then the PS‐b‐PEO block copolymers, star(PS‐PEO‐PEEGE) and star(PS‐PEO‐PG) copolymers were obtained by the ring‐opening polymerization of EO and EEGE respectively via the variation of the functional end group, and then the hydrolysis of the ethoxyethyl group on the PEEGE arm. The obtained star copolymers and intermediates were characterized by 1H NMR spectroscopy and SEC.

  相似文献   


8.
A novel α,ω‐heterofunctional poly(ethylene oxide) (PEO) macromonomer possessing methacryloyl and thienyl end groups was prepared by ring‐opening polymerization of ethylene oxide initiated by potassium thienylethoxide and termination of the living PEO ends with methacryloyl chloride. Incorporation of methacryloyl and thienyl groups was confirmed by free‐radical and oxidative polymerization processes, respectively, and by means of 1H NMR analysis.

  相似文献   


9.
The eight‐shaped poly(ethylene oxide) (PEO) is synthesized by a combination of Glaser coupling with ring‐opening polymerization (ROP). Firstly, the star‐shaped (PEO‐OH) 4 is synthesized by ROP of ethylene oxide (EO) using pentaerythritol as an initiator and diphenylmethyl potassium (DPMK) as a deprotonated agent, and then the alkyne group is introduced onto the PEO arm‐end to give (PEO‐Alkyne) 4 in a NaH/tetrahydrofuran (THF) system. The intramolecular cyclization is carried out by a Glaser coupling reaction in a pyridine/CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) system at room temperature in an air atmosphere, and eight‐shaped PEO was formed with high efficiency (almost 100%). The target polymers and intermediates were well characterized by SEC, MALDI‐TOF MS, 1H NMR and FT‐IR in detail.

  相似文献   


10.
Well‐defined poly(ethylene oxide)s (PEOs) bearing reactive sites regularly distributed along the chain have been synthesized by the polycondensation of PEO containing a central tertiary amino group with dichloromethane, followed by quaternization with suitable reagents to obtain polyzwitterionic or cationic PEOs with alkyl, allyl, or fluorocarbon pendant groups. The pendant allyl groups have been converted into primary amino groups by reaction with 2‐aminoethanethiol hydrochloride to obtain polyamino‐functionalized PEO.

Polyfunctional PEOs bearing different pendant groups.  相似文献   


11.
A novel type of biodegradable/biocompatible amphiphilic hyperbranched copolymer (H40‐PLA‐b‐MPEG) was synthesized. Its micellar properties were studied by DLS, fluorescence spectroscopy and TEM. The drug release profile showed that the H40‐PLA‐b‐MPEG micelles provide an initial burst release, followed by a sustained release of the entrapped hydrophobic model drug over a period of 4 to 58 h. The copolymer degraded hydrolytically within 6 weeks under physiological conditions. The MTT assay showed no obvious cytotoxicity against a human endothelial cell line at a concentration range of 0–400 µg · mL−1. These results indicate that the H40‐PLA‐b‐MPEG micelles have great potential as hydrophobic drug delivery carriers.

  相似文献   


12.
Poly(ethylene glycol) (PEG)‐based films, nanotubes, and nanotube arrays were successfully made using layer‐by‐layer (LbL) assembly ion‐containing PEO derivatives on porous templates and planar substrates. PEG nanotubes are challenging to produce because PEG dissolves into solutions and solvents used during nanotube processing, but our techniques circumvent the issue. Nanotube dimensions were verified using microscopy and the average observed diameter was 155 nm. The PEG‐based structures showed remarkable stability in water, salt water, and sodium hydroxide solution.

  相似文献   


13.
We present a morphological study of the micellization of an asymmetric semicrystalline block copolymer, poly(butadiene)‐block‐poly(ethylene oxide), in the selective solvent n‐heptane. The molecular weights of the poly(butadiene) (PB) and poly(ethylene oxide) (PEO) blocks are 26 and 3.5 kg · mol−1, respectively. In this solvent, micellization into a liquid PEO‐core and a corona of PB‐chains takes place at room temperature. Through a thermally controlled crystallization of the PEO core at −30 °C, spherical micelles with a crystalline PEO core and a PB corona are obtained. However, crystallization at much lower temperatures (−196 °C; liquid nitrogen) leads to the transition from spherical to rod‐like micelles. With time these rod‐like micelles aggregate and form long needles. Concomitantly, the degree of crystallinity of the PEO‐cores of the rod‐like micelles increases. The transition from a spherical to a rod‐like morphology can be explained by a decrease of solvent power of the solvent n‐heptane for the PB‐corona chains: n‐Heptane becomes a poor solvent at very low temperatures leading to a shrinking of the coronar chains. This favors the transition from spheres to a morphology with a smaller mean curvature, that is, to a cylindrical morphology.

  相似文献   


14.
Degradable dendrimer‐like PEOs were designed using an original ABC‐type branching agent featuring a cleavable ketal group, following an iterative divergent approach based on the anionic ring opening polymerization (AROP) of ethylene oxide and arborization of PEO chain ends. A seventh generation dendrimer‐like PEO carrying 192 peripheral hydroxyls and exhibiting a molar mass of 446 kg · mol−1 was obtained in this way. The chemical degradation of these dendritic scaffolds was next successfully accomplished under acidic conditions, forming linear PEO chains of low molar mass (≈2 kg · mol−1), as monitored by 1H NMR, SEC, and MALDI‐TOF mass spectrometry as well as by AFM.

  相似文献   


15.
A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS‐b‐PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and ultrathin films (<5 nm) formed SINPATs on silicon and mica. The SINPATs consisted of strongly surface‐adsorbed PLA blocks on top of which the PFS blocks dewetted into sphere‐like features. The lateral spacing between these features was regular, and was typically much larger than the length scale associated with regular block copolymer phase separation.

  相似文献   


16.
Summary: Well‐defined poly[(ethylene oxide)‐block‐(sodium 2‐acrylamido‐2‐methyl‐1‐propane sulfonate)] diblock copolymers [P(EOmb‐AMPSn)], have been obtained by water‐based ATRP using α‐methoxy‐ω‐(2‐methylbromoisobutyrate) poly(ethylene oxide)s (MeO‐P[EO]m‐BriB with m ranging from 12 to 113) and CuBr · 2Bpy (Bpy for 2,2′‐bipyridyl) as macroinitiator and catalytic complex, respectively. Compared to direct polymerization in water, it has been demonstrated that the water/methanol (3:1, v/v) mixture is better suited for predicting the final number‐average molar mass from the initial monomer‐to‐macroinitiator molar ratio and achieving a quite narrow polydispersity, even at high monomer conversion ( ≈ 1.4 at 80% conversion). The effect of temperature, solvent mixture composition and addition of NaCl salt on the polymerization rate and extent of control over the copolymer molecular parameters have been highlighted as well.

  相似文献   


17.
Summary: Macrocyclic phenyl ether ketones were prepared via pseudo high dilution condensation. Irradiation of these rings with UV light in a solution containing isopropyl alcohol as hydrogen donor resulted in a photo‐induced reduction of benzophenone to benzopinacol and the formation linked macrocycles. These rings can be heated to undergo ring‐opening polymerization and produce a polymer network or they can be added to a polycondensation reaction to prepare poly(ether ether ketones) with variable degrees of cross‐linking.

Photochemical cross‐linking of PEK rings and ring opening polymerization (n: 2–6). (a) hν, iPrOH, DCM; (b) CsF, 260 °C (polymer 3 ); (c) 4,4′–difluorobenzophenone, hydroquinone, diphenylsulphone, K2CO3, 260 °C (2% polymer 4 ; 6% polymer 5 ).  相似文献   


18.
Summary: Tetraaniline‐block‐poly(L ‐lactide) diblock oligomers are synthesized via ring‐opening polymerization. The diblock oligomers cast from an L ‐lactide selective solvent (chloroform) show spherical aggregates for the leucoemeraldine state, and ring‐like structures that are composed of much smaller spherical aggregates for the emeraldine state. The formation mechanisms of the two different surface morphologies are discussed in detail.

Surface morphology changes induced by oxidation of the aniline segment of tetraaniline‐block‐poly(L ‐lactate) and drying effects.  相似文献   


19.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


20.
Ferrocenylmethyl methacrylate (FMMA) is one of the very few metallocene‐based monomers that are promising candidates for truly living anionic polymerization. Nevertheless, FMMA homopolymers with a narrow polydispersity, or block copolymerization studies that result in satisfying blocking efficiencies, are unknown so far. Here we describe a procedure that leads to highly regular FMMA‐based polymers for the first time, characterized by polydispersity indices (PDI) of less that 1.05 and very high blocking efficiencies (>95%) in sequential copolymerization with styrene. Some of the obtained poly[styrene‐block‐(ferrocenylmethyl methacrylate)]s show unusual microphase morphologies, presumably the consequence of high Tgs causing ‘frustrated’ non‐equilibrium states.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号