首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
A novel light‐induced reversible self‐assembly (LIRSA) system is based on the reversible photodimerization and photocleavage of coumarin groups on the surface of gold nanoparticles (AuNPs) in THF solution. Facilitated by coumarin groups, light irradiation at 365 nm triggers the stable assembly of monodisperse AuNPs; the resulting self‐assembly system can be disassembled back to the disassembled state by a relatively short exposure to benign UV light. The reversible self‐assembly cycle can be repeated 4 times. A specific concentration range of coumarin ligand and the THF solvent were identified to be the two predominant factors that contribute to the LIRSA of AuNPs. This is the first successful application of reversible photodimerization based on a coumarin derivative in the field of AuNP LIRSA. This LIRSA system may provide unique opportunities for the photoregulated synthesis of many adjustable nanostructures and devices.  相似文献   

2.
Silver nanoparticles (Ag-NP) on silica were produced in aqueous solution by deposition of silver on colloidal silica in a small cuvette using radiation from a xenon-mercury lamp. Ag-NP were also synthesized on a much larger scale with low-level, long-term visible light irradiation for several months. In both cases, the nanoparticle production was monitored by the appearance of the surface plasmon resonance (SPR) band at around 410 nm. The growth of the nanoparticles was directly related to the time exposed to radiation, which could be tracked spectrophotometrically over time. We also investigated the possibilities of rapid nanoparticle production without the assistance of radiation though silver oxide by adding alkali hydroxide, which is a relatively unexplored approach for syntheses of Ag-NP on silica. The SPR absorption of Ag-NP was used as a tool in evaluating the size and shape of the resulting nanoparticles along with dynamic light scattering and transmission electron microscopy data. In order to better utilize and understand Ag-NP, we present various ways to control their production through initial concentration adjustments, irradiation effects, gravitational fractionation, sonication and silver oxide formation.  相似文献   

3.
采用Stöber方法,通过调节反应温度及乙醇和水的体积,合成了不同粒径的二氧化硅纳米粒子.以合成的粒径为20 nm的二氧化硅纳米粒子为原料,采用简单、方便的喷涂方法在玻璃片上构筑了纳米粒子涂层.在550 ℃煅烧二氧化硅纳米粒子涂层,增强了二氧化硅纳米粒子在玻璃片上的附着力.用1H, 1H, 2H, 2H-全氟辛基三乙氧基硅烷修饰之后,二氧化硅纳米粒子涂层的表面润湿性由亲水性转变为疏水性.通过喷涂法制备的二氧化硅纳米粒子涂层具有减反增透效果,当二氧化硅纳米粒子质量分数为0.48%、循环喷涂沉积数为3时,涂层在可见光范围内的最大透光率可达95.5%.用扫描电子显微镜观测涂层表面形貌发现,喷涂法制备的涂层是均匀的、可控的.喷涂技术构筑纳米粒子涂层具有简单快速、可大面积应用等优点.  相似文献   

4.
A novel kind of photosensitive water‐dispersible polyaniline (PANI) nanoparticles was designed and prepared by template synthesis using a photo‐responsive vinyl‐coumarin (VM)/2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) copolymer micelle containing coumarin moieties. The resulting PANI nanoparticles exhibited reversible photo‐crosslinking and photo‐decrosslinking behavior similar to coumarin moiety upon irradiation with different UV light as verified by UV–vis absorption. In addition, photoinduced size change of the PANI nanoparticles after 365 nm UV light irradiation was successfully monitored by dynamic light scattering and transmission electron microscopy measurements, further confirming the photosensitivity of the obtained PANI nanoparticles by the incorporation of VM/AMPS copolymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A detection system for a human papillomavirus (HPV) DNA chip based on the light scattering of aggregated silica nanoparticle probes is presented. In the assay, a target HPV DNA is sandwiched between the capture DNA immobilized on the chip and the probe DNA immobilized on the plain silica nanoparticle. The spot where the sandwich reaction occurs appears bright white and is readily distinguishable to the naked eye. Scanning electron microscopy images clearly show the aggregation of the silica nanoparticle probes. When three different sized (55 nm, 137 nm, 286 nm) plain silica nanoparticles were compared, probes of the larger silica nanoparticles showed a higher scattering intensity. Using 286-nm silica nanoparticles, the spots obtained with 200 pM of target DNA were visually detectable. The demonstrated capability to detect a disease related target DNA with direct visualization without using a complex detection instrument provides the prerequisite for the development of portable testing kits for genotyping.  相似文献   

6.
In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C-H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate.  相似文献   

7.
In this article, a systematic study of the design and development of surface-modification schemes for silica nanoparticles is presented. The nanoparticle surface design involves an optimum balance of the use of inert and active surface functional groups to achieve minimal nanoparticle aggregation and reduce nanoparticle nonspecific binding. Silica nanoparticles were prepared in a water-in-oil microemulsion and subsequently surface modified via cohydrolysis with tetraethyl orthosilicate (TEOS) and various organosilane reagents. Nanoparticles with different functional groups, including carboxylate, amine, amine/phosphonate, poly(ethylene glycol), octadecyl, and carboxylate/octadecyl groups, were produced. Aggregation studies using SEM, dynamic light scattering, and zeta potential analysis indicate that severe aggregation among amine-modified silica nanoparticles can be reduced by adding inert functional groups, such as methyl phosphonate, to the surface. To determine the effect of various surface-modification schemes on nanoparticle nonspecific binding, the interaction between functionalized silica nanoparticles and a DNA chip was also studied using confocal imaging/fluorescence microscopy. Dye-doped silica nanoparticles functionalized with octadecyl and carboxylate groups showed minimal nonspecific binding. Using these surface-modification schemes, fluorescent dye-doped silica nanoparticles can be more readily conjugated with biomolecules and used as highly fluorescent, sensitive, and reproducible labels in bioanalytical applications.  相似文献   

8.
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the St?ber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.  相似文献   

9.
Plasmonic nanoparticles such as those of gold or silver have been recently investigated as a possible way to improve light absorption in thin film solar cells. Here, a simple method for the preparation of spherical plasmonic gold nanoparticles in the form of a colloidal solution is presented. The nanoparticle diameter is controlled in the range from several nm to tens of nm depending on the synthesis parameters with the size dispersion down to 14 %. The synthesis is based on thermal decomposition and reduction of the chloroauric acid in the presence of a stabilizing capping agent (surfactant) that is very slowly injected into the hot solvent. The surfactant prevents uncontrolled nanoparticle aggregation during the growth process. The nanoparticle size and shape depend on the type of the stabilizing agent. Surfactants with different lengths of the hydrocarbon chains such as Z-octa-9-decenylamine (oleylamine) with AgNO3 and polyvinylpyrrolidone with AgNO3 were used for the steric stabilization. Hydrodynamic diameter of the gold nanoparticles in the colloidal solution was determined by dynamic light scattering while the size of the nanoparticle metallic core was found by small-angle X-ray scattering. The UV-VIS-NIR spectrophotometer measurements revealed a plasmon resonance absorption in the 500–600 nm range. Self-assembled nanoparticle arrays on a silicon substrate were prepared by drop casting followed by spontaneous evaporation of the solvent and by a modified Langmuir-Blodgett deposition. The degree of perfection of the self-assembled arrays was analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering. Homogeneous close-packed hexagonal ordering of the nanoparticles stretching over large areas was evidenced. These results document the viability of the proposed nanoparticle synthesis for the preparation of high-quality plasmonic templates for thin film solar cells with enhanced power conversion efficiency, surface enhanced Raman scattering, and other applications.  相似文献   

10.
Here we report a universal method of attachment/functionalization of tips for atomic force microscope (AFM) with nanoparticles. The particles of interest are glued to the AFM tip with epoxy. While the gluing of micron size particles with epoxy has been known, attachment of nanoparticles was a problem. The suggested method can be used for attachment of virtually any solid nanoparticles. Approximately every other tip prepared with this method has a single nanoparticle terminated apex. We demonstrate the force measurements between a single approximately 50 nm ceria nanoparticle and flat silica surface in aqueous media of different acidity (pH 4-9). Comparing forces measured with larger ceria particles ( approximately 500 nm), we show that the interaction with nanoparticles is qualitatively different from the interaction with larger particles.  相似文献   

11.
In this research, preparation of the magnetic nanoparticle, coating by a silica shell using (3‐aminopropyl) triethoxysilane and synthesis of a novel sulfonic acid‐substituted imidazolium‐based ionic liquid onto the surface of these particles via a multi‐component reaction, is described. The functionalized nanoparticles was loaded by Ni nanoparticles and characterized by means of techniques such as XRD, FTIR, SEM, EDX, TEM, TGA and ICP‐OES. The nanostructures have spherical shapes that ranged in size from 80 to 100 nm. The catalytic activity of these nanoparticles was tested in aerobic oxidation of primary alcohols that showed good performance in the wide range of primary alcohols in water at mild reaction conditions. As a second step of this work, the tandem oxidative synthesis of alkylacrylonitriles and bisindolylmethanes were investigated using primary alcohols under oxidation conditions. This catalyst system can be recovered using external magnet and reused for five consecutive cycles without significantly less of its activity.  相似文献   

12.
Morphology and surface states of colloidal probucol nanoparticles after dispersion of probucol/polyvinylpyrrolidone (PVP)/sodium dodecyl sulphate (SDS) ternary ground mixture into water were investigated by atomic force microscopy (AFM). The observed particles had core-shell structure, i.e. drug nanocrystals were covered with PVP and SDS complex. The AFM phase image and the force curve analyses indicated that probucol nanoparticles with PVP K17 showed layer structure, compared to those with PVPK12. The structural difference was explainable in terms of the molecular states of PVP-SDS complex on the particle surface. These findings support not only the mechanism of drug nanoparticle formation but also the in vivo absorption results with the almost same particle size of ca. 40 nm.  相似文献   

13.
Zinc oxide nanoparticles, with an average size of about 40 nm, were encapsulated by polystyrene using in situ emulsion polymerization in the presence of 3-methacryloxypropyltrimethoxysilane (MPTMS) as a coupling agent and polyoxyethylene nonylphenyl ether (OP-10) as a surfactant. Polymerization mechanism of nanocomposite latex was discussed. Transmission electron microscopy (TEM) proved the presence of ZnO nanoparticle appeared to be monodisperse in nanosize in polymer composite particles. ZnO/PS nanocomposites were characterized by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FT-IR and XPS revealed that the surface of ZnO particle was successfully grafted by PS through the link of the coupling agent between ZnO and polymer. TGA and DSC results indicated an enhancement of thermal stability of composite materials compared with the pure polymer. SEM (scanning electron microscope) images showed a perfect dispersion of the ZnO particles in latex film. In addition, UV-visible absorption measurements demonstrated that the ZnO/PS composite coatings display a perfect performance of absorbing UV light.  相似文献   

14.
A promising approach to control palladium nanoparticle sizes by application of silane modified silicas was suggested. The combination of reductive properties of silicon hydride groups and hydrophobic properties of alkylsilyl groups which act as agglomeration limiters for metal nanoparticles gives an opportunity to synthesize uniformly distributed particles with a specified size. Silicas modified with triethoxysilane (TES) and diisopropylchlorosilane (DIPCS), as well as, the combination of hexamethyldisilazane (HMDS) and triethoxysilane were applied for formation of such bifunctional matrices. Properties of the silane-modified silica samples and changes occurred during the formation of palladium nanoparticles were studied by IR spectroscopy. Thermal stability of surface chemical compounds was investigated by thermogravimetric analysis (TGA); low-temperature nitrogen adsorption was used to study structural properties of the applied materials. With the use of transmission electron microscopy (TEM) the dependence of palladium nanoparticle size on the nature of support surface layer was found.  相似文献   

15.
A photocleavable low-molecular-weight hydrogelator (LMWG) was synthesized based on coumarin derivative.~1H NMR and UV spectroscopy study suggested that the gelator had good gelling ability, and the driving force for the gelation were hydrogen bonding and π-π stacking. This molecular hydrogel exhibited satisfied photocleavage at C-N bond in 7-amino coumarin with the light irradiation (365 nm,77.5 mW/cm~2). The promising photo-triggered drug release of antineoplastics cytarabine hydrochloride has been obtained, due to the photocleavage motived gel-sol transition.  相似文献   

16.
The stepwise construction of a novel kind of self-assembled organic/inorganic multilayers based on multivalent supramolecular interactions between guest-functionalized dendrimers and host-modified gold nanoparticles has been developed, yielding supramolecular layer-by-layer assembly. The deposition process was monitored by surface plasmon resonance spectroscopy. Further characterization of the multilayer films was performed by means of UV/vis absorption spectroscopy, which showed a linear increase in absorption with the number of bilayers. The growth of the gold nanoparticle plasmon absorption band corresponded to approximately a dense monolayer of gold nanoparticles per bilayer. Ellipsometry and atomic force microscopy (AFM) scratching experiments were used to measure the development of the film thickness with the number of bilayers, confirming linear growth and a thickness increase of approximately 2 nm/bilayer.  相似文献   

17.
Gold nanoparticles were surface modified with an ionizable and pH-sensitive monolayer of thiobarbituric acid (TBA). By variation of the pH value of the solution, nanoparticle aggregates can be produced in a controlled way. The aggregates thus prepared were irradiated with an intense pulsed laser at 532 nm. The products in solution were examined by transmission electron microscopy (TEM) and optical absorption spectroscopy. The TEM images of the products revealed that the nanoparticle aggregates dissociate upon laser irradiation and form much smaller gold nanoparticles. The optical absorption spectra measured simultaneously show the gradual disappearance of the absorbance band of the aggregates at around 680 nm. Additionally, a blue shift (from 534 to 524 nm) of the resonance absorbance corresponding to isolated nanoparticles has been observed. All the observations suggest that the colloidal solution becomes more stable after laser irradiation. Both the reduced nanoparticle size and the stabilizing TBA ligands present on the particle surface contribute to the acquired stability of the colloidal solutions.  相似文献   

18.
Near-infrared (NIR) femtosecond laser irradiation of metallodielectric core-shell silica-gold (SiO(2)-Au) nanoparticles can induce extreme local heating prior to the rapid dissipation of energy caused by the large surface area/volume ratio of nanometer-scale objects. At low pulse intensities, the dielectric silica core is removed, leaving an incomplete gold shell behind. The gold shells with water inside and out still efficiently absorb NIR light from subsequent pulses, showing that a complete shell is not necessary for absorption. At higher pulse intensities, the gold shell itself is melted and disrupted, leading to smaller, approximately 20-nm gold nanoparticles. Spectroscopic measurements show that this disruption is accompanied by optical hole burning of the peak at 730 nm and formation of a new peak at 530 nm. The silica removal and gold shell disruption confirms significant temperature rise of the core-shall nanoparticle. However, the entire process leads to minimal heating of the bulk solution due to the low net energy input.  相似文献   

19.
The size-selective photoetching technique was used to control the size of a CdS nanoparticle inside a silica shell. With monochromatic light irradiation, the diffuse reflectance spectra of silica-coated CdS nanoparticles were blue-shifted, and the size of the resulting CdS nanoparticles incorporated in the silica shells was adjustable by varying the wavelength of irradiated light. TEM observation revealed that the original CdS nanoparticle seemed to be in close contact with the amorphous silica shell to leave almost no clearance, while the monochromatic light irradiation caused the decrease in the size of CdS particles, resulting in the formation of a void space between the photoetched CdS core particle and the silica shell. The average void spaces available in the shells were calculated to be ca. 1.4 and 2.4 nm with the irradiation at 514 and 458 nm, respectively. These results indicated that the size-selective photoetching technique enables the regulation of void space formed in the core-shell structure by choosing the wavelength of irradiation light.  相似文献   

20.
Extinction coefficients of gold nanoparticles with core size ranging from approximately 4 to 40 nm were determined by high resolution transmission electron microscopy analysis and UV-vis absorption spectroscopic measurement. Three different types of gold nanoparticles were prepared and studied: citrate-stabilized nanoparticles in five different sizes; oleylamide-protected gold nanoparticles with a core diameter of 8 nm, and a decanethiol-protected nanoparticle with a diameter of around 4 nm. A linear relationship between the logarithms of extinction coefficients and core diameters of gold particles was found independent of the capping ligands on the particle surface and the solvents used to dissolve the nanoparticles. This linear relation may be used as a calibration curve to determine the concentration or average size of an unknown nanoparticle or nanoparticle-biomolecule conjugate sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号