首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, rac‐(1′R,2R)‐tert‐butyl 2‐(1′‐hydroxyethyl)‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C17H20N2O6, (I), rac‐(1′S,2R)‐tert‐butyl 2‐[1′‐hydroxy‐3′‐(methoxycarbonyl)propyl]‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C20H24N2O8, (II), and rac‐(1′S,2R)‐tert‐butyl 2‐(4′‐bromo‐1′‐hydroxybutyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C13H20BrNO4, (III), are 5‐hydroxyalkyl derivatives of tert‐butyl 2‐oxo‐2,5‐dihydropyrrole‐1‐carboxylate. In all three compounds, the tert‐butoxycarbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2‐oxo‐2,5‐dihydro‐1H‐pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an interesting hexagonal arrangement of symmetry‐related molecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen‐bonded dimers are formed. The Mukaiyama crossed‐aldol‐type reaction was successful when using the 2‐nitrophenyl‐substituted hydroxypyrrole, or the unsubstituted hydroxypyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.  相似文献   

2.
The title compound [systematic name: 1‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐4‐nitro‐1H‐pyrrolo[2,3‐b]pyridine], C12H13N3O5, forms an intramolecular hydrogen bond between the pyridine N atom as acceptor and the 5′‐hydroxy group of the sugar residue as donor. Consequently, the N‐glycosylic bond exhibits a syn conformation, with a χ torsion angle of 61.6 (2)°, and the pentofuranosyl residue adopts a C2′‐endo envelope conformation (2E, S‐type), with P = 162.1 (1)° and τm = 36.2 (1)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a torsion angle γ = 49.1 (2)°. The title nucleoside forms an ordered and stacked three‐dimensional network. The pyrrole ring of one layer faces the pyridine ring of an adjacent layer. Additionally, intermolecular O—H...O and C—H...O hydrogen bonds stabilize the crystal structure.  相似文献   

3.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐3,7‐dihydro‐4H‐pyrrolo[2,3‐d]pyrimidin‐4‐one], C11H13N3O4, represents an acid‐stable derivative of 2′‐deoxyinosine. It exhibits an anti glycosylic bond conformation, with a χ torsion angle of 113.30 (15)°. The furanose moiety adopts an S‐type sugar pucker 4T3, with P = 221.8 (1)° and τm = 40.4 (1)°. The conformation at the exocyclic C4′—C5′ bond of the furanose ring is ap (trans), with γ = 167.14 (10)°. The extended structure forms a three‐dimensional hydrogen‐bond network involving O—H...O, N—H...O and C—H...O hydrogen bonds. The title compound forms an uncommon hydrogen bond between a CH group of the pyrrole system and the ring O atom of the sugar moiety of a neighbouring molecule.  相似文献   

4.
Three new compounds, CuL, CuL′, and Cu2O2L′′2 (H2L=3′‐[(E)‐{[(1S,2S)‐2‐aminocyclohexyl]imino}methyl]‐4′‐hydroxy‐4‐biphenylcarboxlic acid, H2L′=3′‐[(E)‐{[(1S,2S)‐2‐aminocyclohexyl]imino}methyl]‐4′‐hydroxy‐5′‐nitro‐4‐biphenylcarboxlic acid, H2L′′=3′‐(N,N‐dimethylamino methyl)‐4′‐hydroxy‐4‐biphenylcarboxlic acid), were selectively synthesized through a controlled in situ ligand reaction system mediated by copper(II) nitrate and H2L. Selective nitration was achieved by using different solvent mixtures under relatively mild conditions, and an interesting and economical reductive amination system in DMF/EtOH/H2O was also found. All crystal structures were determined by single‐crystal X‐ray diffraction analysis. Both CuL and CuL′ display chiral 1D chain structures, whereas Cu2O2L′′2 possesses a structure with 13×16 Å channels and a free volume of 41.4 %. The possible mechanisms involved in this in situ ligand‐controlled reaction system are discussed in detail.  相似文献   

5.
A new hydrogen terminated 2,2′‐bidipyrrin ligand was prepared from a bipyrrole dialdehyde and 3,4‐diethylpyrrole by a POCl3 induced condensation and isolated as the nickel(II) chelate. Unexpectedly a side reaction occured when base‐deficient and aerobic conditions were chosen in the metalation step. This side reaction led to a novel pentapyrrolic nickel(II) complex with one externally bound pyrrole ring. Further studies showed that the reactions of 2,2′‐bidipyrrins with 3,4‐diethyl‐ or 2,3,4‐trimethylpyrrole and an oxidant resulted in a stepwise exchange of the terminal pyrrole moieties and, in the former case, the introduction of one additional pyrrole ring into one of the two meso positions of the open‐chain tetrapyrrole.  相似文献   

6.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

7.
The title compound [systematic name: 4‐amino‐5‐fluoro‐7‐(β‐d ‐ribofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine], C11H13FN4O4, exhibits an anti glycosylic bond conformation, with a χ torsion angle of −124.7 (3)°. The furanose moiety shows a twisted C2′‐endo sugar pucker (S‐type), with P = 169.8 (3)° and τm = 38.7 (2)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a γ torsion angle of 59.3 (3)°. The nucleobases are stacked head‐to‐head. The extended crystal structure is a three‐dimensional hydrogen‐bond network involving O—H...O, O—H...N and N—H...O hydrogen bonds. The crystal structure of the title nucleoside demonstrates that the C—C bonds nearest the F atom of the pyrrole system are significantly shortened by the electronegative halogen atom.  相似文献   

8.
((?)‐Menthyl (S)‐6′‐acrylyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate ( 3 ) was synthesized and anionically polymerized using n‐BuLi as an initiator in toluene. The monomer 3 was levorotatory and had an [α]D25 value of ?72.4, but its corresponding polymer poly‐ 3 was dextrorotatory and showed an [α]D25 value of +162.0. Poly‐ 3 was confirmed to exist in the form of one‐handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as (?)‐menthyl (S)‐6′‐propionyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2b and (?)‐menthyl (S)‐6′‐heptanoyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2c . This conclusion was also confirmed by the fact that the g‐value of poly‐ 3 is about 11 times of that of monomer 3 .  相似文献   

9.
2‐Chloro‐4‐phenyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic [1,2‐d]benzo [ 1,4]diazepin‐1 ‐one ( III a) and 2‐chloro‐4‐methyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic[1,2‐d]‐benzo[1,4]diazepin‐1‐one ( III b) were synthesized. 1‐Benzoyl‐2‐phenyl‐4‐(4′‐methoxyphenyl)[1,4]‐benzodiazepine ( II a) was formed through benzoylation of starting material 2‐phenyl‐4‐(4′‐methoxyphenyl)‐[1,4]benzodiazepine ( I a) with the inversion of seven‐member ring boat conformation. The thus formed β‐lactams should have four pairs of stereoisomers. However, only one pair of enantiomers (2S,2R,4R) and (2R,2aS,4S) was obtained. The mechanism and stereochemistry of the formation of these compounds were studied on the basis of nmr spectroscopy and further confirmed by X‐ray diffraction.  相似文献   

10.
Peptidyl–RNA conjugates have various applications in studying the ribosome and enzymes participating in tRNA‐dependent pathways such as Fem transferases in peptidoglycan synthesis. Herein a convergent synthesis of peptidyl–RNAs based on Huisgen–Sharpless cycloaddition for the final ligation step is developed. Azides and alkynes are introduced into tRNA and UDP‐MurNAc‐pentapeptide, respectively. Synthesis of 2′‐azido RNA helix starts from 2′‐azido‐2′‐deoxyadenosine that is coupled to deoxycytidine by phosphoramidite chemistry. The resulting dinucleotide is deprotected and ligated to a 22‐nt RNA helix mimicking the acceptor arm of Ala‐tRNAAla by T4 RNA ligase. For alkyne UDP‐MurNAc‐pentapeptide, meso‐cystine is enzymatically incorporated into the peptidoglycan precursor and reduced, and L ‐Cys is converted to dehydroalanine with O‐(mesitylenesulfonyl)hydroxylamine. Reaction of but‐3‐yne‐1‐thiol with dehydroalanine affords the alkyne‐containing UDP‐MurNAc‐pentapeptide. The CuI‐catalyzed azide alkyne cycloaddition reaction in the presence of tris[(1‐hydroxypropyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amine provided the peptidyl‐RNA conjugate, which was tested as an inhibitor of non‐ribosomal FemXWv aminoacyl transferase. The bi‐substrate analogue was found to inhibit FemXWv with an IC50 of (89±9) pM , as both moieties of the peptidyl–RNA conjugate contribute to high‐affinity binding.  相似文献   

11.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

12.
The two new gem‐dihalogeno­cyclo­propanes (1′S,3R)‐3‐(2′,2′‐di­chloro‐1′‐methyl­cyclo­propyl)‐6‐oxoheptanoic acid, C11H16­Cl2O3, (2), and (1′S,3R)‐3‐(2′,2′‐di­bromo‐1′‐methyl­cyclo­propyl)‐6‐oxoheptanoic acid, C11H16Br2O3, (3), are isostructural. Both present two stereogenic centers at C1′ and C3. The absolute configuration was determined by X‐ray methods. The cyclo­propyl rings are unsymmetrical, the shortest bond being distal with respect to the alkyl‐substituted C atom.  相似文献   

13.
The crystal and molecular structures of bis(η5‐2,4,7‐tri­methyl­indenyl)­cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å.  相似文献   

14.
Antiparallel polyamides containing 1H‐pyrrole, 1H‐imidazole, and 3‐hydroxy‐1H‐pyrrole amino acids display a preference for minor‐groove binding oriented N? C with respect to the 5′‐3′ direction of the DNA helix. We find that replacement of a central Py/Py pair with a β/β pair within a ten‐ring hairpin relaxes the orientation preference and, for some DNA sequences, causes the polyamide to prefer the opposite C? N orientation. Substitution of the achiral γ‐aminobutanoic acid (γ) with either (R)(or S)‐2‐(acetylamino)‐4‐aminobutanoic acid moderates the orientation preference of the 2‐β‐2‐hairpin.  相似文献   

15.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

16.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)‐3H,3′H‐[1,1′‐biisobenzofuranylidene]‐3,3′‐dione, (E)‐3‐(3‐oxobenzo[c] thiophen‐1(3H)‐ylidene)isobenzofuran‐1(3H)‐one, and (E)‐3H,3′H‐[1,1′‐bibenzo[c] thiophenylidene]‐3,3′‐dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single‐crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi‐colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

17.
The design of photoactive functionalized electrodes for the sensitive transduction of double‐stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy‐pyrrole)2(dppn)]2+ (bpy‐pyrrole=4‐methyl‐4′‐butylpyrrole‐2,2′‐bipyridine, dppn=benzo[i]dipyrido[3,2‐a:2′,3′‐c]phenazine) exhibiting photosensitive, DNA‐intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized RuII complex, the binding of a double‐stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double‐stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×106 L mol?1 to be estimated. The low detection limit of 1 fmol L?1 and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.  相似文献   

18.
The molecular structures of the two mononuclear title complexes, namely (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(3‐phenylpropylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C14H21NS2)(C7H7OS)O], (I), and (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(propylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C7H15NS2)(C7H7OS)O], (II), exhibit the same coordination environment for the central Tc atoms. The atoms are five‐coordinated (TcNOS3) with a square‐pyramidal geometry comprising a tridentate 2,2′‐(3‐phenylpropylimino)bis(ethanethiolate) or 2,2′‐(propylimino)bis(ethanethiolate) ligand, a 4‐methoxybenzenethiolate ligand and an additional oxide O atom. Intermolecular C—H...O and C—H...S hydrogen bonds between the monomeric units result in two‐dimensional layers with a parallel arrangement.  相似文献   

19.
2,3‐Dihydrothiophene 1,1‐dioxide (‘2‐sulfolene’) reacted with tosylmethyl isocyanide (TsMIC) in the presence of a base to give the hitherto unknown 3,5‐dihydro‐2H‐thieno[2,3‐c]pyrrole 1,1‐dioxide (‘β′‐sulfolenopyrrole’) from the expected cyclocondensation. A serendipitous formation of this β′‐sulfolenopyrrole was found earlier, when we investigated synthetic routes to a 3,5‐dihydro‐1H‐thieno[3,4‐c]pyrrole 2,2‐dioxide (a ‘β″‐sulfolenopyrrole’) from TsMIC and 2,5‐dihydrothiophene 1,1‐dioxide (‘3‐sulfolene’). Here, we present the synthesis and characterization of β′‐sulfolenopyrrole. The X‐ray crystal‐structure analyses of β′‐sulfolenopyrrole and the isomeric β″‐sulfolenopyrrole are also reported here. This β′‐sulfolenopyrrole is a new type of a functionalized pyrrole, which is likely to be of interest for pharmaceutical purposes.  相似文献   

20.
The telechelic α,ω‐alkyne‐poly(methyl methacrylate) (alkyne‐PMMA‐alkyne) was synthesized by single electron transfer radical coupling (SETRC) reaction of α‐alkyne, ω‐bromine‐poly(methyl methacrylate) (alkyne‐ PMMA‐Br). The propargyl 2‐bomoisobutyrate (PgBiB) was first prepared to initiate atom transfer radical polymerization (ATRP) of methyl methacrylate at 45°C using CuCl/1,1,4,7,10,10‐hexamethyl triethylenetetramine (HMTETA) as homogeneous catalytic system. Then the SETRC reaction was conducted at room temperature in the presence of nascent Cu(0) and N,N,N′,N′ ′,N′ ′‐pentamethyldiethyllenetriamine (PMDETA). The precursor alkyne‐PMMA‐Br and coupled product alkyne‐PMMA‐alkyne were characterized by GPC and 1H NMR in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号