首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The determination of inorganic arsenic species in ground water matrices using hydride generation coupled online to ICP-AES (HG-ICP-AES) is suggested on the fact that the As(III)-species shows significantly higher signal intensities at low sodium boron hydride (NaBH4) concentrations than the As(V)-species. The sodium boron hydride concentration used for the determination of As(III) without any considerable interferences of As(V) was at 13.2 mmol/L NaBH4 (0.05 wt/v%), whereas the concentration for the total As determination was at 158.4 mmol/L NaBH4 (0.6 wt/v%). The interferences of As(V) during the As(III) measurements were very small: at concentrations below 100 μg/L of total arsenic, the interferences of As(V) were smaller than 2%. An amount of As(III) higher than 10% of the total As amount could be determined exactly and reliably. The total amount of arsenic is measured after reducing the sample with 20 mmol/L L-cysteine (C3H7NO2S). Finally, the amount of the As(V)-species is calculated by the difference between the As(III)-species and the total arsenic. Therefore, this analytical method requires the absence of organic arsenic species, but if they still appear, they could be frozen out with liquid nitrogen after the hydride generation system. The linearity of calibration reaches from 2 μg/L up to 1000 μg/L with a detection limit routinely of about 1 μg/L for each species. The advantages of this method in comparison to AAS measurements are the higher extent of the linear calibration range (3 orders of magnitude) and a higher sensitivity. Additional merits of the method developed are easy handling and high sampling rates.  相似文献   

2.
The different chemical forms of arsenic compounds, including inorganic and organic species, present distinct environmental impacts and toxicities. Desorption electrospray ionization mass spectrometry (DESI-MS) is an excellent technique for in situ analysis, as it operates under atmospheric pressure and room temperature and is conducted with no/minimal sample pretreatment. Aimed at expanding its scope, DESI-MS is applied herein for the quick and reliable detection of inorganic (arsenate—As(V): AsO4 3? and arsenite—As(III): AsO2 ?) and organic (dimethylarsinic acid—DMA: (CH3)2AsO(OH) and disodium methyl arsonate hexahydrate: CH3AsO3·2Na·6H2O) arsenic compounds in fern leaves. Operational conditions of DESI-MS were optimized with DMA standard deposited on paper surfaces to improve ionization efficiency and detection limits. Mass spectra data for all arsenic species were acquired in both the positive and negative ion modes. The positive ion mode was shown to be useful in detecting both the organic and inorganic arsenic compounds. The negative ion mode was shown only to be useful in detecting As(V) species. Moreover, MS/MS spectra were recorded to confirm the identity of each arsenic compound by the characteristic fragmentation profiles. Optimized conditions of DESI-MS were applied to the analysis of fern leaves. LC-ICP-MS was employed to confirm the results obtained by DESI-MS and to quantify the arsenic species in fern leaves. The results confirmed the applicability of DESI-MS in detecting arsenic compounds in complex matrices.  相似文献   

3.
Arsenic-tolerant freshwater alga Chlorella vulgaris which had been collected from an arsenicpolluted environment were tested for uptake and excretion of inorganic arsenic. Approximately half the quantity of arsenic taken up by C. vulgaris was estimated to be adhered to the extraneous coat (10 wt %) of the cell. The remainder was bioaccumulated by the cell. Both adhered and accumulated arsenic concentrations increased with an increase in arsenic(V) concentration of the aqueous phase. Arsenic(V) accumulation was affected by the growth phse: arsenic was most actively accumulated when the cell was exposed to arsenic during the early exponential phase and then accumulation decreased with an increase in culture time exposed to arsenic. The alga grew well in the modified Detmer (MD) medium containing 1 mg As(III) dm?3 and the growth curve was approximated by a ‘logistic equation’. Arsenic(III) was accumulated up to the second day of the culture time and arsenic(III) accumulation decreased with an increase in the culture time after that. Arsenic accumulation was also largely affected by various nutrients, especially by managanese, iron and phosphorus compounds. A modified MD medium with the three nutrients was proposed for the purpose of effective removal of arsenic from the aqueous phase. Using radioactive arsenate (Na2H74AsO4), the arsenic accumulated was found to be readily excreted under conditions which were unfavourable for the multiplication of C. vulgaris.  相似文献   

4.
To avoid changes in the original As species distribution in natural water after sampling, a method of immediate separation of As(V) by anion exchange at the sampling site was developed. The procedure consists of two steps. The total concentration of arsenic is determined in one part of the water sample acidified on site. Another part of the water samples is pressed through a column filled with an anion exchanger. The As(III) species that is not redox-stable remains in the effluent of the sorbents column and can be analyzed with conventional methods after stabilization by addition of conc. HNO3. As(V) is sorbed by the exchanger material. The As(V) concentration can be calculated as the difference between Assol and As(III), neglecting very low contents of methylated species. Oxidation of Fe(II) by air followed by co-precipitation of arsenic with iron hydroxide was applied in field experiments to minimize the As concentration in seepage and mining water.  相似文献   

5.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

6.
Hashem MA  Takaki M  Jodai T  Toda K 《Talanta》2011,84(5):1336-1341
In this work, a new analytical method for gasifiable compounds based on sequential hydride generation flow injection analysis (SHGFIA) was applied to water analysis and leaching investigation. For water analysis, it was confirmed that 1 μg L−1 As(III) and As(V) were stable for a few days when EDTA was added in the sample waters. Dissolved As(III) and total arsenic (As(III) + As(V)) were converted to AsH3 in neutral and acidic medium, respectively, to transfer to a miniature gas scrubber (100 μL in absorber volume). The collected arsenic was successively measured by flow analysis based on molybdenum blue chemistry. With this system, changes in As(III) and As(V) concentrations of water placed with arsenic-contaminated-sediment was monitored in near real time. From these data, kinetic analyses were carried out and kinetic constant was obtained from plot of ln{(C − C)/C} where C and C were leached arsenic concentration and its final concentration, respectively. It was found that rate of As(III) leaching was much faster than that of As(V) while As(V) leached more in amount compared to As(III). In this work, it was demonstrated that kinetic investigation is also one of the important application of flow analysis. The SHGFIA system showed excellent performance for leaching analysis of arsenic with discrimination of As(III) and As(V).  相似文献   

7.
Summary A method is described for the determination of arsenic(III) and arsenic(V) in water samples. The sample (adjusted to pH 2.5 to 3.5 with HCl or NaOH) is passed through a chromatographic column filled with inert support modified with the organotin reagent (C8H17)2SnCl2. Under these conditions arsenate is quantitatively retained, while arsenite is not. Arsenate is eluted from the column with 2 mol/l HCl (1–2 ml). Both effluate [As(III)] and eluate [As(V)] are analyzed by flame or graphite furnace AAS. The method was applied to the analysis of waste waters from a metallurgical plant and potable water from the same region. Recoveries are in the range of 85–115%.  相似文献   

8.
The crystal structures of caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium dihydrogen arsenate(V) trihydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis(dihydrogen phosphate), Li2(H2PO4)2, were solved from single‐crystal X‐ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydrothermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three‐dimensional (3D) framework of PO4 tetrahedra sharing corners with Li2O6 dimers built of edge‐sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.  相似文献   

9.
李勋  汪正浩 《中国化学》2007,25(3):295-299
A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L^-1 H2SO4. The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(Ⅴ) was 0.4 A, whereas the current for the determination of As(Ⅲ) and As(Ⅴ) was 1.2 A. For equal concentrations of As(Ⅲ) and As(Ⅴ) in a sample, the interferences of As(Ⅴ) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(Ⅴ) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(Ⅴ) measured at 1.2 A, and then the concentration of As(Ⅴ) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·mL^-1 for As(Ⅲ) and As(Ⅴ), respectively. The relative standard deviations were of 3.5% for 20 ng·mL^-1 As(Ⅲ) and 3.2% for 20 ng·mL^-1 As(Ⅴ). The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.  相似文献   

10.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

11.
A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO4, the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 μg L−1. The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.  相似文献   

12.
Abstract

The title pseudo-arsonolipid with palmitoyl side chain has been prepared in ~70% yield from its parent DL-2,3-dihydroxybutane-1,4-bis(arsonic acid) after reduction of the As(V) to As(III) by thiophenol, acylation with palmitoyl chloride in the presence of pyridine and catalytic amounts of 4-(dimethylamino)pyridine, and reoxidation of As(III) to As(V) by hydrogen peroxide. In CDCl3/CD3OD esterification of the –AsO3H2 groups was detected by 1H NMR.  相似文献   

13.
Despite the importance of accurately determining inorganic arsenic speciation in natural waters to predicting bioavailability and environmental and health impacts, there remains considerable debate about the most appropriate species preservation strategies to adopt. In particular, the high-iron, low-Eh (redox potential) shallow groundwaters in West Bengal, Bangladesh and SE Asia, the use of which for drinking and irrigation purposes has led to massive international concerns for human health, are particularly prone to changes in arsenic speciation after sampling. The effectiveness of HCl and EDTA preservation strategies has been compared and used on variably arsenic-rich West Bengali groundwater samples, analysed by ion chromatography–inductively coupled plasma–mass spectrometry (IC–ICP–MS). Immediate filtration and acidification with HCl followed by refrigerated storage was found to be the most effective strategy for minimizing the oxidation of inorganic As(III) during storage. The use of a PRP-X100 (Hamilton) column with a 20 mmol L–1 NH4H2PO4 as mobile phase enabled the separation of Cl from As(III), monomethylarsonic acid, dimethylarsinic acid and As(V), thereby eliminating any isobaric interference between 40Ar35Cl+ and 75As+. The use of EDTA as a preservative, whose action is impaired by the high calcium concentrations typical of these types of groundwater, resulted in marked oxidation during storage. The use of HCl is therefore indicated for analytical methods in which chloride-rich matrices are not problematical. The groundwaters analysed by IC–ICP–MS were found to contain between 5 and 770 ng As mL–1 exclusively as inorganic arsenic species. As(III)/total-As varied between 0 and 0.94.  相似文献   

14.
Rui Liu  Maoyang Xi  Yi Lv 《Talanta》2009,78(3):885-635
Arsine trapping on resistively heated tungsten coil was investigated and an analytical method for ultratrace arsenic determination in environmental samples was established. Several chemical modifiers, including Re, Pt, Mo, Ta and Rh, were explored as permanent chemical modifiers for tungsten coil on-line trapping and Rh gave the best performance. Arsine was on-line trapped on Rh-coated tungsten coil at 640 °C, then released at 1930 °C and subsequently delivered to an atomic fluorescence spectrometer (AFS) by a mixture of Ar and H2 for measurement. In the medium of 2% (v/v) HCl and 3% (m/v) KBH4, arsine can be selectively generated from As(III). Total inorganic arsenic was determined after pre-reduction of As(V) to As(III) in 0.5% (m/v) thiourea-0.5% (m/v) ascorbic acid solution. The concentration of As(V) was calculated by difference between the total inorganic arsenic and As(III), and inorganic arsenic speciation was thus achieved. With 8 min on-line trapping, the limit of detection was 10 ng L−1 for As(III) and 9 ng L−1 for total As; and the precision was found to be <5% R.S.D. (n = 7) for 0.2 ng mL−1 As. The proposed method was successfully applied in total arsenic determination of several standard reference materials and inorganic arsenic speciation analysis of nature water samples.  相似文献   

15.
The interaction of arsenic(V) and arsenic(III) oxyanions with metal cations was investigated by potentiometry under temperature and ionic strength conditions approaching those prevailing in natural waters. The selection includes the major metal cations and some other ions of high environmental relevance. Ionic pairs [M(AsVO4)]?, [M(HAsVO4)] and [M(H2AsIIIO3)]+ formation is suggested for all +2 metal cations, based on the potentiometric results. These ion-pairs between arsenic anions and other metal cations are hardly ever mentioned or taken into account when arsenic speciation in natural waters is considered. These results provide the basis for studying arsenic speciation in natural aquatic systems, on which environmental fate, bioavailability and toxicity of the element depend. Some extrapolations to the conditions of the natural waters are presented as well as some insights into the adsorption process onto hydrous oxides.  相似文献   

16.
Lopez A  Torralba R  Palacios MA  Camara C 《Talanta》1992,39(10):1343-1348
It is shown that the potassium iodide to the samples to reduce As(V) to AS(III) is not essential when total inorganic arsenic is determined by molecular spectrophotometry (trapping AsH(3) in Ag-DDTC) or by atomic-absorption spectrometry (if Ar flow-rate and NaBH(4) addition rate are controlled in 6M hydrochloric acid medium). Furthermore, in the presence of low concentration of organic arsenic, a method is reported for the selective determination of inorganic As(III) and As(V), based on the use of citrate/citric acid medium to determine As(III) and hydrochloric acid to determine total inorganic As. As(V) is determined by the difference between total inorganic As and As(III). The interference level of organic arsenic species (monomethylarsenic acid and dimethylarsenic acid) in the determination of total inorganic arsenic and AS(III) in 6M hydrochloric acid and citrate/citric acid medium respectively, is reported in the text. The developed method is applied to determine As(III) and As(V) in spiked, tap and waste waters and in lake sediments.  相似文献   

17.
A chitosan resin functionalized with 3,4-diamino benzoic acid (CCTS-DBA resin) was newly synthesized by using a cross-linked chitosan (CCTS) as base material. The adsorption behavior of trace amounts of elements on the CCTS-DBA resin was examined by the pretreatment with a mini-column and measurement of the elements by inductively coupled plasma-Mass spectrometry (ICP-MS). Arsenic(V) could be retained on the CCTS-DBA resin at pH 3 as an oxoanion of H2AsO4. Selenium(VI) is strongly adsorbed at pH 2 and pH 3 as an oxoanion of SeO42−, while selenium(IV) as HSeO3 is adsorbed on the resin at pH 3. The sorption capacities are 82, 64, and 88 mg g−1resin for As(V), Se(IV), and Se(VI), respectively. The effect of common anions and cations on the adsorption of As(V), Se(IV), and Se(VI) were studied; there was no interference from such anionic matrices as chloride, sulfate, phosphate, and nitrate up to 20 ppm, as well as from such artificial river water matrices as Na, K, Mg, and Ca after passing samples through the mini-column containing the resin. The CCTS-DBA resin was applied to the collection of arsenic and selenium species in bottled drinking water, tap water, and river water.  相似文献   

18.
Several extraction procedures are described allowing arsenic speciation in sediments. The extraction of organometallic compounds such as dimethylarsinic acid or monomethylarsonic acid is quite simple since these compounds are stable in the different extraction media (HCl/ HNO3, H3PO4, ammonium oxalate) and are easily released independent of the extraction mode (magnetic stirring or microwave solubilization). Extraction yields are higher than 96% for these two arsenic forms. An HCl/HNO3 microwave solubilization procedure allows the quantitative solubilization of mineral arsenic, but the differentiation between the two oxidation states is not possible owing to the oxidation of As(III) to As(V). Extractions with orthophosphoric acid or ammonium oxalate allow the solubilization of mineral arsenic with extraction yields ranging from 90 to 95% and the differentiation between As(III) and As(V). Nevertheless, the amount of As(III) is underestimated owing to its partial oxidation. The usefulness and advantages of microwave solubilization compared with conventional extraction procedures are discussed. Received: 17 May 1996 / Revised: 19 September 1996 / Accepted: 25 September 1996  相似文献   

19.
Several extraction procedures are described allowing arsenic speciation in sediments. The extraction of organometallic compounds such as dimethylarsinic acid or monomethylarsonic acid is quite simple since these compounds are stable in the different extraction media (HCl/ HNO3, H3PO4, ammonium oxalate) and are easily released independent of the extraction mode (magnetic stirring or microwave solubilization). Extraction yields are higher than 96% for these two arsenic forms. An HCl/HNO3 microwave solubilization procedure allows the quantitative solubilization of mineral arsenic, but the differentiation between the two oxidation states is not possible owing to the oxidation of As(III) to As(V). Extractions with orthophosphoric acid or ammonium oxalate allow the solubilization of mineral arsenic with extraction yields ranging from 90 to 95% and the differentiation between As(III) and As(V). Nevertheless, the amount of As(III) is underestimated owing to its partial oxidation. The usefulness and advantages of microwave solubilization compared with conventional extraction procedures are discussed. Received: 17 May 1996 / Revised: 19 September 1996 / Accepted: 25 September 1996  相似文献   

20.
A method for direct de termination of total in organic arsenic (III+V), arsenic (III) and dimethylarsinate (DMA) in sea water was developed by combining continuous‐flow selective hydride generation and inductively coupled plasma mass spectrometry (ICP‐MS) is presented. The principle underlying selective hydride generation is based on proper control of the reaction conditions for achieving separation of the respective arsenic species. The effects of pH and composition of reaction media on mutual interference between the arsenic species were investigated in detail. The results indicate that the appropriate media for the selective determination of total in organic arsenic, DMA and As(III) are 6 M HNO3, acetate buffer at pH = 4.63 and citrate buffer at pH = 6.54, respectively. The concentrations of total inorganic arsenic species, As(III+V), and As(III) were respectively deter mined and that of As(V) was obtained by the difference between them. As to the concentration of DMA, it was obtained after correction from the interference caused by As(III) and As(V). By following the established procedure, the detection lim its (as based on 3‐sigma criterion) for As(III+V), As(III) and DMA were 0.050, 0.009, and 0.002 ng/mL, respectively. There liability of the pro posed method was evaluated in terms of precision and spike addition. The results indicated that the precision of better than 3% and spike recovery of 95 to 105% for all the arsenic species tested in the natural sea water samples can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号