首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

2.
A series of tridentate ligands N,N-bis-[(di-substituted-1-pyrazolyl)methyl]arylamines 2-3a,b and benzylamine 4a,b, tetradentate N,N′-bis-[(di-substituted-1-pyrazolyl)methyl]para-phenylenediamines 7a,b and hexadentate N,N,N′,N′-tetra-[(di-substituted-1-pyrazolyl)methyl]para-phenylenediamines 8a,b has been prepared in good yield by condensation of arylamines, benzylamine or para-phenylenediamine with N-hydroxymethyl disubstituted pyrazoles 1a,b. The synthesis and characterisation of these various polydentate ligands are described.  相似文献   

3.
Three diruthenium(III) compounds Ru2(L)4Cl2, where L is mMeODMBA (N,N′-dimethyl-3-methoxybenzamidinate, 1a), DiMeODMBA (N,N′-dimethyl-3,5-dimethoxy benzamidinate, 1b), or DEBA (N,N′-diethylbenzamidinate, 1c), were prepared from the reactions between Ru2(OAc)4Cl and respective HL under reflux conditions. Metathesis reactions between 1 and LiC2Y resulted in bis-alkynyl derivatives Ru2(L)4(C2Y)2 [Y=Ph (2), SiMe3 (3), SiiPr3 (4) and C2SiMe3 (5)]. The parent compounds 1 are paramagnetic (S=1), while bis-alkynyl derivatives 2-5 are diamagnetic and display well-solved 1H- and 13C-NMR spectra. Molecular structures of compounds 1b, 1c, 2c, 3c and 4b were established through single crystal X-ray diffraction studies, which revealed RuRu bond lengths of ca. 2.32 Å for parent compounds 1 and 2.45 Å for bis-alkynyl derivatives. Cyclic voltammograms of all compounds feature three one-electron couples: an oxidation and two reductions, while the reversibility of observed couples depends on the nature of axial ligands.  相似文献   

4.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

5.
N,N,N′,N′-Tetramethylmethanediamine (1a), N,N,N′,N′-tetramethylethanediamine (1b), N,N,N′,N′-tetramethyl-1,3-propanediamine (1c), and N,N,N′,N′-tetramethyl-1,6-hexanediamine (1d) were reacted at 25 °C with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (2a), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione (2b), 2-thenoyltrifluoroacetone (2c), and 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione (2d) to form the ionic adducts 3-18. 1,4,7,10-Tetraazacyclododecane (1e) reacted at 25 °C with β-diketones (2a-d) and 1,1,1-trifluoro-2,4-pentanedione (2e) to give ionic solids 19-23 in good yields. Some of the products are liquid at 25 °C and are thermally stable over long liquid ranges as determined by thermal gravimetric analyses. Single-crystal X-ray structure determinations show that compounds 9 and 21 crystallize in the monoclinic space groups P2(1)/c and P2(1)/n, respectively. All the new compounds were characterized by 1H, 19F and 13C NMR, electrospray MS and/or elemental analyses.  相似文献   

6.
The nucleophilic conjugate addition of chiral formaldehyde N,N-dialkylhydrazones 1 to doubly activated cyclic alkenes 2-8 proceeds smoothly to afford the corresponding Michael adducts 14, 16, 18, 20, 22, 24, and 25 in variable yields and selectivities. The reactions take place either spontaneously or in the presence of MgI2 as a mild Lewis acid depending on the type of substrate. Release of the chiral auxiliary was achieved by transformation of the hydrazone moiety into acetals, dithioacetals or nitriles.  相似文献   

7.
Intramolecular N-alkylation of 2,3-O-isopropylidene-5-O-methanesulfonyl-6-O-t-butyldimethylsilyl-d-mannofuranose-oxime 7 afforded a five-membered cyclic nitrone 9, which on N-O bond reductive cleavage followed by deprotection of -OTBS and acetonide functionalities gave 1,4-dideoxy-1,4-imino-l-allitol (DIA) 3. Addition of allylmagnesium chloride to nitrone 9 afforded α-allylated product 10a in high diastereoselectivity providing an easy entry to N-hydroxy-C1-α-allyl-substituted pyrrolidine iminosugar 4a after removal of protecting group, while N-O bond reductive cleavage in 10a afforded C1-α-allyl-pyrrolidine iminosugar 4b.  相似文献   

8.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

9.
N-Arylmethyl-7-azabicyclo[2.2.1]heptane (I) derivatives have been synthesized by deprotection of N-protected, N-(arylmethyl)cyclohex-3-enamines, bromination of the resulting secondary cyclohex-3-enamines, followed by base-promoted cyclization (route a), or by bromination of N-protected, N-(arylmethyl)cyclohex-3-enamines followed by deprotection and base-mediated cyclization (route b). In these protocols we have observed that the bromination of the key intermediates (12, 13, and 19) is stereoselective leading to major trans-3-cis-4-dibromides (14, 17, and 20), whose mild base-mediated heterocyclization (on compound 14), or the two-step acid hydrolysis plus base-promoted cyclization (on compounds 17 and 20), gave products 6 and 7 in good yield. A mechanistic investigation using DFT has been carried out to explain the results observed in this work.  相似文献   

10.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

11.
The synthesis of two N-aryl substituted 2-silaimidazolidenes 9a, b by metal-reduction of the appropriate silicon(IV) heterocycles is reported. Structural as well as spectroscopic data obtained for the N-aryl substituted N-heterocyclic silylenes (NHSi) are very close to those obtained previously for their N-alkyl substituted counterparts. NHSis 9a, b are used as starting materials for the synthesis of a series of dichalcogenadisiletanes 19-24 and for of a mono silylene tungsten complex 29. The reactivity studies revealed only marginally differences between the N-aryl substituted NHSis 9a, b and previously described N-alkyl substituted silylenes.  相似文献   

12.
Photoinduced cycloadditions of N-methyl-1,8-naphthalenedicarboximide 1 with phenylacetylenes 2a-2c, cyclopropylacetylene 2d, diphenylacetylenes 2e-2f and 1-phenylpropyne 2g were investigated. In the case of phenylacetylenes 2a, 2b and cyclopropylacetylene 2c, photoreaction with 1 takes place at the naphthalene C(1)C(2) bond to give the cyclobutene products. For 4-methoxyphenylacetylene 1c, the cyclobutene 3c is obtained together with the 4-benzo[a]thebenidinone 4c derived from a primary oxetene product formed by [2+2] addition of the imide carbonyl with the alkyne. Similar to 2c, photocycloaddition of 1 with 2e and 2f gave the cyclobutenes 7e, 7f, 8f and the 4-benzo[a]thebenidinone products 9e, 9f and 10f, respectively, derived from the corresponding oxetenes. Photoreaction of 1 with 2g gave cyclobutene 7g and benzo[a]thebenidinone 9g. Sensitization experiment and internal heavy atom effect study showed that these reactions proceed from the ππ* singlet excited state of 1. Estimation of the free energy change for electron transfer between 11* and the alkynes and the calculation of charge and spin density distribution in the anion radical of 1 and the cation radical of the alkynes suggested that the cyclobutene products are formed by direct [2+2] cycloaddition of 11* with the alkyne, while the formation of the oxetene products is the result of electron transfer interaction between 11* and the alkyne. The regioselectivity in the oxetene formation is accounted for by charge and spin density distribution in the anion radical of 1 and the cation radical of the alkyne.  相似文献   

13.
A new synthetic method providing expedient access to a wide range of polyfunctionalized N-hydroxyindoles (IV) is reported. These unique constructs are assembled by nucleophilic additions to in situ generated α,β-unsaturated nitrones (III) through carbon-carbon and carbon-heteroatom bond formation. The new synthetic technology was applied to the synthesis of nocathiacin I (1) model systems (2 and 3a-c) containing the N-hydroxyindole structural motif.  相似文献   

14.
A rare silylative hydroxyalkylation of amide compounds with chiral aldehydes has been developed utilizing a Lewis acid-Lewis base promoter system consisting of an equimolecular mixture of tert-butyldimethylsilyl trifluoromethanesulfonate and N-diisopropylethylamine. This approach culminated in the synthesis of several enantiopure acyclic nucleoside representatives comprising thymidine analogues 6, 7, 9, 10, 12 and 13, uridine analogues 15 and 16, and 6-chloropurine derivatives 18 and 19.  相似文献   

15.
Feng-Peng Wang  Liang Xu 《Tetrahedron》2005,61(8):2149-2167
This study, as a part of conversion of the C19-diterpenoid alkaloids to the taxoids, described the search of a suitable route to the key intermediate B with four approaches (ABC, ACB, BCA, and CAB) designed and examined. In these cases, a new and efficient approach (CAB) toward the synthesis of the vital intermediates 51 or 52 has been developed. The key steps include the use of a semipinacol rearrangement treatment of 41 with NaOH/DMF under refluxing conditions for 30 min to afford 42, and the rupture of the N-C-19 bond found in 45 or 48 to give 51 or 52, respectively, through NBS imination followed by the creation of the oxaziridine 47 or the nitrone 50 and finally HIO4 oxidation cleavages.  相似文献   

16.
The solvent-free reactions of fullerenes and N-alkylglycines with and without aldehydes (RCHO) 2a-e under high-speed vibration milling (HSVM) conditions have been investigated. Fulleropyrrolidines 4a-e (C60(CH2N(CH3)CHR), R=H (4a), C6H5 (4b), p-NO2-C6H4 (4c), p-CH3O-C6H4 (4d), p-(CH3)2N-C6H4 (4e)) were obtained in moderate yields from reactions of C60 with aldehydes 2a-e and N-methylglycine (Prato reaction). In all these solvent-free reactions, 4a was found to be formed besides 4b-e, indicating that fullerenes can react with N-substituted glycines in the absence of aldehyde to give fulleropyrrolidines. For this novel reaction, a possible reaction mechanism involving an electron transfer process has been proposed. Intrigued by this observation, the dependence of the yield on the reagent ratio for the reaction of C60 with paraformaldehyde and/or N-methylglycine was examined to search the optimal conditions. The reaction of C70 with paraformaldehyde and/or N-methylglycine under HSVM conditions was also studied and was found to give the positional isomers of [70]fulleropyrrolidines.  相似文献   

17.
Two new Lycopodium alkaloids, lycopladines F (1) and G (2), have been isolated from the club moss Lycopodium complanatum, and the structures and relative stereochemistries of 1 and 2 were elucidated on the basis of spectroscopic data. Lycopladine F (1) is a rare C16N2-type Lycopodium alkaloid possessing an amino acid residue (C4N).  相似文献   

18.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

19.
Palladium complexes of N-phenyl-2-pyridylamine (4) and dipyridylamine substrates (7, 11) have been studied. Due to the coordination ability of the pyridine-nitrogen atoms, the pyridyl substrates, 4, 7, 11 were subjected to Pd(OAc)2 complexations and a number of N-aryl-2-pyridylamine Pd complexes (13-17) were isolated and characterised, in particular by NMR and ESI-MS. A new method for the preparation of the acetato-bridged six-membered ring palladacycle complex (13) of 4 is reported. The dipyridyl amines 7, 11 formed cis/trans bis-dentate acetato-bridged dimeric Pd2Lig2(OAc)2 (14a,b/16a,b) and Pd3Lig2(OAc)4 complexes (15a,b/17a,b). The N-aryl-2-pyridylamine substrates (4, 7, 11) were prepared by oxidative nucleophilic substitution, by 1,3-cycloaddition reaction or by Buchwald amination.  相似文献   

20.
Modified oligodeoxynucleotides incorporating 4-N-(N-arylcarbamoyl)-dC derivatives 1a-c were synthesized. The 1H NMR spectra of 1a-c suggest that the carbamoyl group forms an intramolecular hydrogen bond with the cytosine ring nitrogen atom so that formation of a Watson-Crick base pair with the complementary guanine base is inhibited. The hybridization properties of oligodeoxynucleotides containing 1a-c were investigated by use of Tm analysis. The hybridization properties of 4-N-(N-phenylcarbamoyl)-dC (1a) were similar to those of 4-N-(N-alkylcarbamoyl)-dC derivatives reported previously. In sharp contrast to 1a, it turned out that 4-N-(N-napht-1-yl) and (N-quionol-5-yl)-dC (1b,c) have a unique property as a universal base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号