首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

2.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

3.
The ansa-bis(cyclopentadiene) compounds, Me2Si(C5HPh4)(C5H4R) (R = H (2); But (3)), have been prepared by the reaction of C5HPh4(SiMe2Cl) (1) with Na(C5H5) or Li(C5H4But), respectively, and transformed to the di-lithium derivatives, Li2{Me2Si(C5Ph4)(C5H3R)} (R = H (4); But (5)), by the action of n-butyllithium. The ansa-zirconocene complexes, [Zr{Me2Si(η5-C5Ph4)(η5-C5H3R)}Cl2] (R = H (6); But (7)), were synthesized from the reaction of ZrCl4 with 4 or 5, respectively. Compounds 6 and 7 have been tested in the polymerization of ethylene and compared with their methyl-substituted analogues, [Zr{Me2Si(η5-C5Me4)(η5-C5H3R)}Cl2] (R = H (8); But (9)). Whilst 8 and 9 are catalytically active, the tetraphenyl-substituted complexes 6 and 7 proved to be inactive in the polymerization of ethylene. This phenomenon has been explained by DFT calculations based on the reaction intermediates in the polymerization processes involving 6 and 7, which showed that the extraction of a methyl group from the zirconocene complex to form the cationic active specie is endothermic and therefore unfavourable.  相似文献   

4.
The Sn(IV) butyl complexes [BunSnCl3 − n(NCN)] (NCN = [C6H3(CH2NMe2)2-2,6], n = 1 (1), 2 (2), 3 (3)) were prepared. Spectroscopic analysis of 1-3 by 1H and 119Sn NMR gave evidence for the presence of intramolecular N → Sn interactions in solution. The molecular structure of 1, as determined by a single-crystal X-ray diffraction study, revealed that it contained a six-coordinate Sn(IV) center with intramolecular N → Sn coordination of both ortho-amine substituents. Addition of SnCl4 to 1 resulted in the isolation of the HCl adduct [BuSnCl3(NCN+H)] (6). Reactions of 2 and 3 with SnCl4 each resulted in the HCl salt [SnCl4(NCN+H)] (8) and the corresponding butyltin chloride, Bu2SnCl2 and Bu3SnCl, respectively. The formation of HCl adducts 6 and 8 was ascribed to transfer of the NCN ligand to SnCl4 and the presence of HCl (from partial hydrolysis of the product or SnCl4 during the work up procedure). The molecular structures of 6 and 8 have been determined through single-crystal X-ray diffraction and revealed the presence of a [BuSnCl3(aryl)] or [SnCl4(aryl)] stannate anion, respectively, with in each case one coordinated ortho-amine function and one protonated amine moiety involved in N-H?Cl-Sn hydrogen bonding in both compounds (2.14 Å for 6 and 2.18 Å for 8).  相似文献   

5.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

6.
The organo-tin compounds, Me2Sn(C5H4R-1)2 (R = Me (1), Pri (2), But (3), SiMe3 (4)) and Me2Sn(C5Me4R-1)2 (R = H (5), SiMe3 (6)), were prepared by the reaction of Me2SnCl2 with the lithium or sodium derivative of the corresponding cyclopentadiene. Compounds 1-6 have been characterized by multinuclear NMR spectroscopy (1H, 13C, 119Sn). In addition the molecular structures of 5 and 6 were determined by single crystal X-ray diffraction studies. The transmetalation reaction of 1-6 with ZrCl4 or [NbCl4(THF)2] gave the corresponding metallocene complexes in high yields.  相似文献   

7.
The diorganotin(IV) compounds, [Me2SnL2(OH2)]2 (1), [nBu2SnL2(OH2)]2 (2), [nBu2SnL1]3 · 0.5C3H6O (3), [nBu2SnL3]3 · 0.5C6H6 (4) and [Ph2SnL3]n · 0.5C6H6 (5) (L = carboxylic acid residue, i.e., 2-{[(E)-1-(2-oxyaryl)alkylidene]amino}acetate), were synthesized by treating the appropriate diorganotin(IV) dichloride with the potassium salt of the ligand in anhydrous methanol.The reaction of Ph2SnL2 (L = 2-{[(E)-1-(2-oxyphenyl)ethylidene]amino}acetate) with 1,10-phenanthroline (Phen) yielded a 1:1 adduct of composition, [Ph2SnL2(Phen)] (6).The crystal structures of 1-6 were determined.The crystal of 1 is composed of centrosymmetric dimers of the basic Me2SnL2(OH2) moiety, where the two Sn-centres are linked by two asymmetric Sn-O?Sn bridges involving the carboxylic acid O atom of the ligand and a long Sn?O distance of 3.174(2) Å.The dimers are further linked into columns by hydrogen bonds.The coordination geometry about the Sn atom is a distorted pentagonal bipyramid with the two methyl groups in axial positions.The structure of 2 is similar.The same Sn atom coordination geometry is observed in compound 3, which is a cyclic trinuclear[nBu2SnL1]3 compound. Each Sn atom is coordinated by the phenoxide O atom, one carboxylate O atom and the imino N atom from one ligand and both the exo- and endo-carboxylate O atoms (mean Sn-O(exo): 2.35 Å; Sn-O(endo): 2.96 Å) from an adjacent ligand to form the equatorial plane, while the two butyl groups occupy axial positions. Compound 4 was found to crystallize in two polymorphic forms. The Sn-complex in both forms has a trinuclear [nBu2SnL3]3 structural motif similar to that found in 3. In compound 5, distorted trigonal bipyramidal Ph2SnL3 units are linked into polymeric cis-bridged chains by a weak Sn?O interaction (3.491(2) Å) involving the exocyclic O atom of the tridentate ligand of a neighboring Sn-complex unit. This interaction completes a highly distorted octahedron about the Sn atom, where the weakly coordinated exocyclic O atom and one phenyl group are trans to one another. In contrast, a monomeric distorted pentagonal bipyramidal geometry is found for adduct 6 where the Sn-phenyl groups occupy the axial positions. The solution and solid-state structures are compared by using 119Sn NMR chemical shift data. Compounds 1-6 were also studied using ESI-MS and their positive- and negative-ions mass fragmentation patterns are discussed.  相似文献   

8.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

9.
Treatment of UI3(THF)4 with [M(Et2O)][SPSMe] (M = Li, K; [SPSMe] = 1-methyl-2,6-bis(diphenylphosphine sulfide)-3,5-diphenylphosphinine anion) gave the cationic tris SPS complex [U(SPSMe)3]I (1). Similar reaction of U(BH4)3(THF)3 and [M(Et2O)][SPSMe] afforded, in addition to the [U(SPS)3]+ cation, crystals of the sulfido complex [U{(μ3-S)4U3(SPSMe)3(BH4)3}2] (2). The metal environment in 1 is a tricapped trigonal prism and the core of the heptanuclear cluster 2 is a corner-shared double-cubane.  相似文献   

10.
Seven group 14 element(IV) compounds 2-7 have been prepared, derived either (2-5) from the potassium β-diketiminate K(L) [L = {N(Ar)C(Me)}2CH, Ar = C6H3Pri2-2,6] (1) or the known lithium β-dialdiminate Li(L′)] [L′ = {N(Ar)C(H)}2CPh, Ar = C6H3Pri2-2,6]. Treatment of 1 with ButC(O)Cl, Me3SiCl, Ph3SnCl, or Me3SnCl afforded {N(Ar)C(Me)}2C(H)C(O)But (2), [ArNC(Me)C(H)C(Me)N(Ar)SiMe3] (3), [HN(Ar)C(Me)C(H)C(CH2SnPh3)N(Ar)] (4), or (5), respectively. Compounds 4 and 5 are remarkable as they have arisen from a tautomer of 1; crystalline centrosymmetric 5 has a fused tricyclic structure, a central eight-membered ring flanked by two six-membered rings. The compounds [GeCl2(L′)(OGeCl3)] (6) or [SnCl(L′)Me2] (7), the first group 14 metal β-dialdiminates, were obtained from Li(L′) and (GeCl3)2O or Me2SnCl2, respectively. The Sn(II) compound SnCl(L′) (8) was prepared from SnCl2 and K(L′). The molecular structures of the crystalline compounds 3-8 are reported.  相似文献   

11.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

12.
Reduction of isopropyldimethylsilyl-substituted titanocene dichloride [TiCl25-C5Me4SiMe2Pri)2] (1) by excess magnesium in the presence of excess bis(trimethylsilyl)ethyne (btmse) in tetrahydrofuran at 60 °C yielded a mixture of products amongst them only the trinuclear Ti-Mg-Ti hydrido-bridged complex Mg[Ti(μ-H)25-C5Me4SiMe2Pri)]2 (3) was isolated and characterized. The precursor of titanocene, [Ti(η5-C5Me4SiMe2Pri)22-btmse)] (6), was obtained from the identical system which, after initial formation of [TiCl(η5-C5Me4SiMe2Pri)2] (2), reacted at −18 °C overnight and then the solution was rapidly separated from the remaining magnesium. Titanocene [Ti(η5-C5Me4SiMe2Pri)2] (7) was obtained by thermolysis of 6 at 75 °C in vacuum. Crystal structures of 1, 2, 3, 6, and 7 were determined.  相似文献   

13.
The synthesis of novel bulky tris[dimethyl(ethyl/benzyl/p-tolyl/α-naphthyl)silylmethyl]stannanes (1-4) is described. Alkylation of SnCl4 with Me2(ethyl/p-tolyl)SiCH2MgBr (10-11) gave mainly the triorganotin chlorides [(Me2(ethyl/p-tolyl)SiCH2)]3SnCl 14 and 15, which were isolated by silica gel chromatography. Reduction of 14 and 15 with LiAlH4 in THF gave the corresponding triorganotin hydrides 1 and 2, respectively. [Me2(benzyl/α-naphthyl)SiCH2]3SnCl 16 and 17, generated by the alkylation of SnCl4 with Me2(benzyl/α-naphthyl)SiCH2MgBr 12 and 13, were inseparable from the minor product [Me2(benzyl/α-naphthyl)SiCH2]2SnCl218 and 19, respectively. Treatment of the mixtures of 16/18 and 17/19 with NaOH furnished the corresponding mixtures of stannoxanes, from which the hexakisdistannoxanes [Me2(benzyl/α-naphthyl)SiCH2]6Sn2O 20 and 22 were isolated from the minor dialkyltin oxide derivatives [Me2(benzyl/α-naphthyl)SiCH2]2SnO in good yields. Reduction of 20 and 22 with BH3 in THF gave [Me2(benzyl/α-naphthyl)SiCH2]3SnH (3 and 4), respectively in good yields. 1H, 13C, 119Sn, 29Si NMR characteristics of the newly synthesized compounds are included.  相似文献   

14.
Syntheses and crystal structures of [tBu3SbCr(CO)5] (1), [tBu3BiM(CO)5] [M = Cr (2), W (3)] and [tBu3BiMnCp′(CO)2] (4) (Cp′ = η5-C5H4CH3) are reported.  相似文献   

15.
The reaction of the complex [{(η6-C6Me6)Ru(μ-Cl)Cl}2] 1 with sodium azide ligand gave two new dimers of the composition [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2 and [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3, depending upon the reaction conditions. Complex 3 with excess of sodium azide in ethanol yielded complex 2. These complexes undergo substitution reactions with monodentate ligands to yield monomeric complexes of the type [(η6-C6Me6)Ru(X)(N3)(L)] {X = N3, Cl, L = PPh3 (4a, 9a); PMe2Ph (4b, 9b); AsPh3 (4c, 9c); X = N3, L = pyrazole (Hpz) (5a); 3-methylpyrazole (3-Hmpz) (5b) and 3,5-dimethyl-pyrazole (3,5-Hdmpz) (5c)}. Complexes 2 and 3 also react with bidentate ligands to give bridging complexes of the type [{(η6-C6Me6)Ru(N3)(X)]2(μ-L)} {X = N3, Cl, L = 1,2-bis(diphenylphosphino)methane (dppm) (6, 10); 1,2-bis(diphenylphosphino)ethane (dppe) (7, 11); 1,2-bis(diphenylphosphino)propane (dppp) (8, 12); X = Cl, L = 4,4-bipyridine (4,4′-bipy) (13)}. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as by analytical data.The molecular structures of the representative complexes [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2, [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3,[(η6-C6Me6)Ru(N3)2(PPh3)] 4a and [{(η6-C6Me6)Ru(N3)2}2 (μ-dppm)] 6 were established by single crystal X-ray diffraction studies.  相似文献   

16.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

17.
A series of new triorganotin(IV) pyridinedicarboxylates [(C2H5)3NH][(Me3Sn)3(2,6-pdc)2(H2O)2] (1), [(C2H5)3NH][(Ph3Sn)3(2,6-pdc)2(H2O)2] (2), [(C2H5)3NH]{[(PhCH2)3Sn]3(2,6-pdc)2(H2O)2} (3), [Me3Sn(3,5-pdc)]n (4), [Ph3Sn(3,5-pdc)]n (5), [(PhCH2)3Sn(3,5-pdc)]n (6), [(Me3Sn)2(2,5-pdc)]n (7), [(Ph3Sn)2(2,5-pdc)]n (8) and {[(PhCH2)3Sn]2(2,5-pdc)}n (9) were synthesized by the reaction of trimethyltin(IV), triphenyltin(IV) or tribenzyltin(IV) chloride with 2,6(3,5 or 2,5)-H2pdc (pdc = pyridinedicarboxylate) when triethylamine was added. Complexes 1-9 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. Among them complexes 1, 5 and 7 have also been characterized by X-ray crystallographic diffraction analyses. Complex 1 has a trinuclear structure and forms a 2D supramolecular structure due to the coordinated water molecules via hydrogen bonds to the pendant O atoms of the carboxyl groups and the N atoms derived of the pyridine ring. Complex 5 forms a 1D polymeric chain by the intermolecular Sn?N (N atom derived of pyridine ring) interactions. Complex 7 has a network structure where 2,5-pyridinedicarboxylate acts as a tetradentate ligand coordinated to trimethyltin(IV) ions.  相似文献   

18.
The reactions of trans-[MoO(ONOMe)Cl2] 1 (ONOMe = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) dianion) and trans-[MoO(ONOtBu)Cl2] 2 (ONOtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) with PhNCO afforded new imido molybdenum complexes trans-[Mo(NPh)(ONOMe)Cl2] 3 and trans-[Mo(NPh)(ONOtBu)Cl2] 4, respectively. As analogous oxotungsten starting materials did not show similar reactivity, corresponding imido tungsten complexes were prepared by the reaction between [W(NPh)Cl4] with aminobis(phenol)s. These reactions yielded cis- and trans-isomers of dichloro complexes [W(NPh)(ONOMe)Cl2] 5 and [W(NPh)(ONOtBu)Cl2] 6, respectively. The molecular structures of 4, cis-6 and trans-6 were verified by X-ray crystallography. Organosubstituted imido tungsten(VI) complex cis-[W(NPh)(ONOtBu)Me2] 7 was prepared by the transmetallation reaction of 6 (either cis or trans isomer) with methyl magnesium iodide.  相似文献   

19.
The syntheses and spectroscopic (NMR, MS) investigations of the antimonates [Ph4P]+[Me2SbCl4] (1), [Me4Sb]+[Me2SbCl4] (2), [Et4N]+[Ph2SbCl4] (3), [Bu4N]+[Ph2SbCl4] (4), [Me4Sb]+[Ph2SbCl4] (5), [Et3MeSb]+[Ph2SbCl4] (6), [Et4N]+[Ph2SbF4] (7) and [Et4N]+[Ph2SbBr4] (8) are reported. Halogen scrambling reactions of Et4NBr or Ph4EBr (E = P, Sb) with R2SbCl3 (R = Me, Ph) produce mixtures of compounds from which crystals of [Et4N]+[Ph2SbBr1.24Cl2.76] (9), [Et4N]+[Ph2SbBr2.92Cl1.08] (10) or [Ph4Sb]+[Me2SbCl4] (11) were isolated. The crystal and molecular structures of 1 and 3-11 are reported.  相似文献   

20.
Trimethylstannyl (diphenylphosphino)acetate (1), which is readily accessible from potassium (diphenylphosphino)acetate and trimethylstannyl chloride, may serve as the source of (diphenylphosphino)acetate anion in the preparation of coordination compounds. Thus, the reactions between [M(cod)Cl2] (M = Pd and Pt; cod = η22-cycloocta-1,5-diene) and two equivalents of 1 give [M(Ph2PCH2CO22O,P)2] (2 and 3), while the reaction of [{Pd(μ-Cl)Cl(PFur3)}2] (4; Fur = 2-furyl) with one equivalent of 1 yields [SP-4-3]-[PdCl(Ph2PCH2CO22O,P)(PFur3)] (5). The reactions of 1 with the dimers [{Rh(η5-C5Me5)Cl(μ-Cl)}2] and [{Ru(η6-1,4-MeC6H4(CHMe2))Cl(μ-Cl)}2] (at 1-to-metal ratio 1:1) produce O,P-chelated complexes as well, albeit as stable adducts with the liberated Me3SnCl: [RhCl(η5-C5Me5)(Ph2PCH2CO22O,P)] · Me3SnCl (6) and[RuCl(η6-1,4-MeC6H4(CHMe2))(Ph2PCH2CO22O,P)] · Me3SnCl (8). The related complexes with P-monodentate (diphenylphosphino)acetic acid, [RhCl25-C5Me5)(Ph2PCH2CO2H-κ,P)] (7) and [RuCl26-1,4-MeC6H4(CHMe2))(Ph2PCH2CO2H-κP)] (9), were obtained by bridge splitting in the dimers with the phosphinocarboxylic ligand. All new compounds were characterized by spectral methods and combustion analyses, and the structures of 2 · 3CH2Cl2, 3, 4, 5, 6 and 8 were determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号