首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Modelling of the critical micelle concentrations (cmc) using the molecular connectivity indices was performed for a set of 21 cationic gemini surfactants with medium-length spacers. The obtained model contains only the second-order Kier and Hall molecular connectivity index. It is suggested that the index 2 χ includes some information about flexibility. The obtained model was used to predict log10 cmc of other cationic gemini surfactants. The agreement between calculated and experimental values of log10 cmc for the gemini surfactants that were not used in the correlation is very good.  相似文献   

2.
3.
Pyrene fluorescence measurements were carried out on various binary mixtures of the antidepressant amphiphilic drug amitriptyline hydrochloride (AMT) with conventional (TTAB and CTAB) and gemini surfactants (14-4-14 and 16-4-16). In all cases mixed micellar aggregates were formed and the mixed critical micelle concentration (cmc) of various mixtures was computed from the I 1/I 3 versus total surfactant concentration plots. In the region where mixed micelles are formed, the interaction of the amphiphlic drug and four surfactants showed synergistic behavior. The results were analyzed using an interaction parameter, β, which characterize the interaction in the mixed micelle and is introduced by a regular solution theory. The β values are negative in all binary mixtures, and their magnitudes increase with increasing hydrophobicity of the amphiphile. The micellar mole fraction of AMT in the mixed micelle (x 1) and in the ideal sate (x ideal) were evaluated and their values (x 1 > x ideal) suggest that the contribution of the AMT component is greater in binary mixtures as compared to that in the ideal state. Activity coefficients (f 1 and f 2) and excess Gibbs energy (G ex) were also calculated. The values of micelle aggregation numbers (N agg) and various other parameters like the Stern–Volmer constant (K sv), micropolarity and dielectric constant of mixed systems have also been evaluated from the ratios of respective peak intensities (I 1/I 3 or I 0/I 1).  相似文献   

4.
The present research work is associated with the fluorescence investigations of binary aqueous mixed surfactants solutions of anionic bis-sulfosuccinate gemini surfactant (BSGSMA1,8) and three different conventional surfactants—anionic viz. sodium dodecyl sulfate (SDS), cationic viz. cetyl trimethyl ammonium bromide (CTAB), and nonionic surfactant viz. Triton X 100. Steady-state fluorescence spectroscopy technique has been utilized to examine the micellization behavior of aqueous solution of pure myristyl alcohol-based BSGSMA1,8 having flexible methylene chain [(CH2)8] as spacer group. Critical micelle concentration (CMC), aggregation number (N), and micropolarity of pure and mixed surfactants systems were explored during the investigations. The results revealed the best synergism behavior of prepared gemini BSGSMA1,8 with SDS as compared to CTAB and Triton X 100. The maximum reduction in the value of pyrene intensity ratio (I1/I3) was observed for gemini and SDS mixed surfactant solution. On the other hand, the increased I1/I3 value of mixed gemini with Triton X 100 exhibited that mixed surfactant system of anionic gemini BSGSMA1,8 with non-ionic Triton X 100 is not as compact as other mixed surfactant systems. Aggregation number increased and micropolarity decreased with increased concentration of gemini surfactants.  相似文献   

5.
Using surface tension and fluorescence methods, the surface and solution properties of two cationic gemini surfactants {pentanediyl-1,5-bis(dimethylcetylammonium bromide) and hexanediyl-1,6-bis(dimethylcetylammonium bromide)} (referred to as 16-5-16 and 16-6-16) have been studied in the presence and absence of primary linear alkanols. Parameters studied include the critical micelle concentration (CMC), C 20 (the surfactant concentration required to reduce the surface tension of the solvent by 20 mN·m?1), Г max (maximum surface excess), and A min (minimum surface area per molecule). These parameters indicate mixed micelle formation and, therefore, surfactant-additive interaction parameters in mixed micelles and mixed monolayers, as well as activity coefficients, were calculated. A synergistic effect was observed in all instances and was found to be correlated with the chain length of the alkanols. The CMC values of 16-s-16 (s = 5, 6) decrease with increasing alkanol concentration and the extent of this effect follows the sequence: 1-octanol (C8OH) > 1-heptanol (C7OH) > hexan-1-ol (C6OH) > 1-pentanol (C5OH) > butanol (C4OH). The micelle aggregation number (N agg) of mixed micelles has been obtained using the steady state fluorescence quenching method. The micropolarity of gemini/alkanol systems has been evaluated from the ratio of intensity of peaks (I 1/I 3) of the pyrene fluorescence emission spectra. Results are interpreted on the basis of the structure of mixed micelles and monolayers.  相似文献   

6.
The interaction between N, N′-bis(dimethyldodecyl)-1,6-hexanediammoniumdibromide (G12-6-12) and cetyltrimethylammonium bromide (CTAB) in D20 aqueous medium has been investigated by NMR at 298 K. The G12-6-12 and CTAB are about 0.773 and measured critical micelle concentration (cmc) of 0.668 mmol/L, respectively. The cmc^* (cmc of mixture) values are less than CMC^* (cmc of ideally mixed solution) in the mixed system, and the interaction parameter βM〈0 at different molar fractions α of G12-6-12 in the mixed systems, but just when α≤0.3, cmc^* values are much smaller than CMC^*, and βM satisfies the relation of |βM|〉|ln(cmc1/cmc2)| (cmcl: cmc of pure G12-6-12 and cmc2: cmc Of pure CTAB). The results indicate that there exists synergism between G12-6-12 and CTAB, and they can form mixed micelles, which is further proven by 2D NOESY and self-diffusion coefficient D experiments. There are intermolecular cross peaks between G12-6-12 and CTAB in 2D NOESY, and the radius of micelles in mixed solution is bigger than that in G12-6-12 pure solution in D experiments, indicating there are mixed micelles. However, when α〉0.3, we find that cmc^*≈CMC^*, βM≈0, obviously, the two surfactants are almost ideal mixing fitting the pseudo-phase separation model and regular solution theory.  相似文献   

7.
A series of dissymmetric gemini imidazolium surfactants with different spacer length ([CmCsCnim]Br2, m + n = 24, m = 12, 14, 16, 18; s = 2, 4, 6) were synthesized and characterized by 1H NMR and ESI-MS spectroscopy. Their adsorption and thermodynamic properties were investigated by the surface tension and electrical conductivity methods. Consequently, the surface activity parameters (cmc, γcmc, πcmc, pC20, cmc/C20, Γmax, Amin) and thermodynamic parameters (ΔGmθ, ΔHmθ, ΔSmθ) were obtained. The effects of the dissymmetry (m/n) and the spacer length (s) on the surface activity and micellization process of surfactants have been discussed in detail.  相似文献   

8.
Herein we report the effect of (chloride salt) electrolytes on the mixed micellization of (equimolar) a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium bromide) (16-6-16), and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB) in aqueous solutions. In absence and presence of (chloride salt) MCl (where M?Li, Na, and K) electrolytes, the critical micelle concentration (CMC) of mixed (16-6-16 + CTAB) surfactants was measured by surface tension measurements. With increasing the concentration of electrolyte, the CMCs were increasing. The surface properties and the thermodynamic parameters of the mixed micellar systems were also evaluated. From these evaluated thermodynamic parameters, it was found that in presence of electrolyte the stability of the mixed micellar system is more.  相似文献   

9.
In this study micellar properties of a phenothiazine drug, promazine hydrochloride, at different concentrations of NaCl and cationic surfactants (conventional as well as gemini surfactants) are presented. The parameters studied are cmc (critical micelle concentration), X 1 (mole fraction of surfactant in micelles), f 1, f 2 (activity coefficients) and ΔG ex (excess free energy). Cl ions (from NaCl) get adsorbed on the micellar head groups and, by decreasing the repulsion among them, lower the cmc. Surfactants form mixed micelles with the drug and the values of X 1, X 1id (mole fraction of the surfactant in micelles in ideal state), interaction parameter β, f 1 and f 2 all suggest non-ideal but synergistic nature. The ΔG ex values are negative indicating that the mixed state is more stable than the pure micelle state. The article is published in the original.  相似文献   

10.
Dimeric or gemini surfactants are novel surfactants that are finding a great deal of discussion in the academic and industrial arena. They consist of two hydrophobic chains and two polar head groups covalently linked by a spacer. Data on critical micelle concentration (cmc) and degree of counterion dissociation (α) are reported on bis-cationic C16H33N+(CH3)2–(CH2)s–N+(CH3)2C16H33, 2Br, referred to as 16-s-16, for spacer lengths s=4, 5, 6 in aqueous and in polar nonaqueous (1-propanol, 2-methoxyethanol or methyl cellosolve, dimethyl sulfoxide, acetonitrile)-water-mixed solvents. The behavior is compared with conventional monomeric surfactant cetyltrimethylammonium bromide (CTAB). Thermodynamic parameters are obtained from the temperature dependence of the cmc values. It is observed that micellization tendency of the surfactants decreases in the presence of polar nonaqueous solvents. However, detailed studies with dimethylsulfoxide (DMSO) show that the geminis nearly outclass the micellization-arresting property of this solvent. Also, within geminis, higher spacer length is found suitable for showing micellization even with high DMSO content (50% v/v). The implications of these results of gemini micellization may be useful in micellar catalysis in polar nonaqueous solvents.  相似文献   

11.
The densities of aqueous solutions of mixed surfactants of dodecyltrimethylammonium bromide and 1-dodecyl-3-methylimidazolium bromide (DTAB/C12mimBr) were measured at various compositions. The concentration dependent apparent molar volumes of these mixed surfactants were calculated and used to deduce the critical micelle concentrations (cmc) and the apparent molar volumes in the micelles and the continuous phase. The one-parameter Margules equation was applied to correlate the composition dependent cmc values and to obtain the activity coefficients and mole fractions of these surfactants in the mixed micelles, which were further used to calculate the excess Gibbs energies and the excess volumes. It was found that the excess Gibbs energies and the excess volumes of the mixed micelles are all negative, indicating that these mixed micelles are more stable and packed more tightly than their corresponding pure micelles.  相似文献   

12.
The effects of NaBr on the adsorption of alkanediyl-bis-(dimethyl dodecyl- ammonium bromide) (referred to as C12-s-C12 2Br) at the air/water interface and on the micellization in the solution have been investigated by surface tension and fluorescence techniques. The results showed that the addition of NaBr greatly enhances their efficiency and effectiveness in surface tension reduction as well as the ability of micellization, even induces strong premicellar aggregation before the cmc. These were attributed to the unique molecular structure of gemini surfactant, where the flexible polymethylene chain was the spacer linking the two quaternary ammonium heads. By a short spacer, the charges of the two quaternary ammonium head groups are concentrated. Even for a long spacer (s = 12), since it is bent toward the alkyl tails, the similar effect is also produced. This results in the high sensitivity of their ionic head groups to salt. Besides, the addition of salt also effectively promotes the hydrophobic interaction between the alkyl tails of gemini surfactants. The addition of NaBr strongly promotes the adsorption of quaternary ammonium gemini surfactants C12-s-C12 2Br at the air/water interface and the micellization in the solution.  相似文献   

13.
The effect of dicationic gemini surfactants H33C16(CH3)2N+‐(CH2)s‐N+(CH3)2 C16H33, 2Br? (s= 4, 5, 6) on the reaction of a dipeptide glycyl–tyrosine (Gly–Tyr) with ninhydrin has been studied spectrophotometrically at 70°C and pH 5.0. The reaction follows first‐ and fractional‐order kinetics, respectively, in [Gly–Tyr] and [ninhydrin]. The gemini surfactant micellar media are comparatively more effective than their single chain–single head counterpart cetyltrimethylammonium bromide (CTAB) micelles. Whereas typical rate constant (kΨ) increase and leveling‐off regions, just like CTAB, are observed with geminis, the latter produces a third region of increasing kΨ at higher concentrations. This subsequent increase is ascribed to the change in the micellar morphology of the geminis. The pseudophase model of micelles was used to quantitatively analyze the kΨ ? [gemini] data, wherein the micellar‐binding constants KS for [Gly–Tyr] and KN for ninhydrin were evaluated. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 800–809, 2012  相似文献   

14.
In the present study, we have investigated the self-association, mixed micellization, and thermodynamic studies of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium bromide (16-6-16)) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of pure (16-6-16 and CTAB) and mixed (16-6-16+CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), Amin (the minimum area per surfactant molecule at the air/water interface), etc.) of micellar (16-6-16 or CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were evaluated. The thermodynamic parameters of the micellar (16-6-16 and CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were also evaluated.  相似文献   

15.
In the present work, the behavior of mixed drug–surfactant systems has been studied by surface tension measurements. The drug used in this work is adiphenine hydrochloride (ADP) and the surfactants are of m-s-m type geminis, i.e., alkanediyl-α,ω-bis(dimethylalkylammonium bromide), with m = (14, 16), s = (4, 5, 6), and conventional alkyltrimethylammonium bromides (CTAB, TTAB). The excess surface concentration (Γ max ) increases and the minimum head group area at the air/water interface (A min) decreases with increasing concentration of surfactant in the drug solution. Both the critical micelle concentration (cmc) and ideal cmc (cmc*) values decrease with mole fraction of surfactants. Also, the cmc values are lower than cmc*, indicating attractive interactions are present in the mixed micelles. The mole fractions of surfactant in the micelles $ \left( {X_{1}^{m} } \right) $ and monolayers $ \left( {X_{1}^{\sigma } } \right) $ , as well as the respective interaction parameters ( $ \beta^{m} $ , $ \beta^{\sigma } $ ), indicate that monolayer formation is easier than micelle formation due to the rigid hydrophobic part of the drug.  相似文献   

16.
An extension of the Markov chain model (MC) for micellization is proposed, which allows the distribution of the surfactants between the monomer solution and the micelles in a mixed surfactant system to be predicted. The dependence of the critical micelle concentration (cmc) on the composition of the solution is investigated. The equilibrium thermodynamic relation between cmc and micelle composition is discussed. The case of ternary mixtures is analyzed, and theoretical triangular diagram is constructed according to MC. Available experimental data for binary and ternary mixtures agree well with the new MC theory. The dependence of MC parameters on the structure of the surfactants is discussed. Comparison of MC with the simple mixture (“regular solution”) model is presented. The parameters of the MC theory are related to the interaction parameter β SM of the simple mixture model.  相似文献   

17.
Micellization and phase separation of the amphiphilic drug amitriptyline hydrochloride (AMT) in the absence and presence of cationic hydrotropes (aniline hydrochloride, para-toluidine hydrochloride, and ortho-toluidine hydrochloride) have been investigated in the present study. The experimental critical micelle concentration (cmc) values are lower than cmc id values (cmc id is the cmc value at ideal mixing state), indicating attractive interactions between the two components (drug and hydrotrope) in mixed micelles. The bulk behaviors were investigated using the different theoretical models of Clint, Rubingh, Motomura, and Rodenas for comparison of the results of different binary combinations of the drug and hydrotropes. Synergistic interactions were confirmed in all binary combinations at all temperatures, which increase with increasing concentration of hydrotropes. Activity coefficients (f 1 and f 2) were found to be consistently less than unity indicating nonideality in the systems. At a fixed drug concentration (50 mmol·dm?3) and pH (6.7), the hydrotropes showed a continuous increase in the cloud point. Thermodynamic parameters were also evaluated and discussed in detail.  相似文献   

18.
N-hydroxyethyl-3-alkyloxypyridinium amphiphiles have been synthesized and characterized by various spectroscopic techniques. Self-assembling properties of these amphiphiles have been studied by surface tension, conductivity, and fluorescence measurements. Basic micellization parameters like critical micelle concentration (cmc), surface tension at the cmc (γ cmc), adsorption efficiency (pC20), effectiveness of surface tension reduction (Π cmc), maximum surface excess concentration (Γ max) and minimum surface area/molecule (A min), and Gibbs free energy of the micellization (ΔG0 mic) have also been determined. The micellization of these 3-alkyloxypyridinium halides in aqueous phase have been found to be exothermic and entropy-driven as assessed by conductivity measurements at different temperatures. Thermal degradation of these surfactants has also been assessed by thermal gravimetric analysis under nitrogen atmosphere. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of these surfactants on C6 glioma cells show them to be less toxic than conventional cationic surfactants.  相似文献   

19.
《Acta Physico》2007,23(1):64-67
With n-hexanol as the cosurfactant, quaternary ammonium Gemini surfactants C12-EOx-C12 · 2Br (x = 1, 2, 3) formed the reverse micelles in n-heptane. The critical reverse micelle concentrations (cmch) were determined using the absorption spectrum method with iodine as the probe. All values were less than the corresponding critical micelle concentration (cmcaq) in aqueous solution, where C12-EOx-C12 · 2Br formed the normal micelles. The cmch increased with increasing x, which was similar to the variation of cmcaq with x. The saturated amount of water solubilizated by the reverse micelles was enhanced by either increasing x or raising the temperature.  相似文献   

20.
The effect of the addition of 2-methoxyethanol on the critical micelle concentration (cmc) and on the degree of counterion dissociation (??) of butanediyl-1,4-bis(tetradecyldimethylammonium bromide) gemini surfactant, [C14H29N+(CH3)2?C(CH2)4?CN+(CH3)2C14H29,2Br?] (referred as 14?C4?C14,2Br?), has been studied by varying the compositions of the 2-methoxyethanol + water mixed solvent media (0 to 50?%). To determine various thermodynamic parameters of micellization, on the basis of the mass?Caction model for micelle formation, the experiments were performed at selected compositions of the mixed solvent at four temperatures ranging between 25?°C and 50?°C. Furthermore, the air/bulk surface tensions of the pure and mixed media were determined, and a successful attempt was made to correlate the cohesive energy density described through the Gordon parameter with the values of Gibbs energy of micellization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号