首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
原油乳状液稳定性和破乳研究进展   总被引:14,自引:0,他引:14  
本文从控制乳状液稳定性的一些因素-界面膜、界面张力、双电层、空间位阻、固体粒子、液晶、油相溶解度、连续相粘度等方面综述了有关乳状液稳定性的一些研究进展。对国内外有关原油乳状液的破乳研究也做了综述。同时,介绍了应用于乳状液稳定性研究的新的实验技术和仪器。  相似文献   

2.
乳状液的微观特征影响着油包水乳状液的稳定性,从而影响油基钻井液的稳定性能。室内选用3#白油、26%CaCl2水溶液、JH主辅乳化剂,采用超声分散乳化方法,配制得到油包水型白油乳状液。采用显微图像技术,研究了JH主辅乳化剂加量、油水比、有机土对白油乳状液微观特性的影响;以油水界面张力、动态界面张力以及界面扩张粘弹性等为参数分析了乳状液稳定性的机理。结果表明:JH主辅乳化剂配比为4∶1,加量为4%,油水比为80∶20时,白油乳状液中的分散相呈球形液珠,直径为3.31~12.93μm;油水界面张力为0.559 mN·m-1;JH主辅乳化剂形成的油水界面膜强度大,白油乳状液稳定性好;有机土与JH主辅乳化剂的协同作用使白油乳状液和油基钻井液的稳定性能显著提高。  相似文献   

3.
基于两相分离的乳状液稳定模型,研究了三元复合驱模拟原油乳状液稳定动力学特性;通过液膜强度和油水界面张力探讨了碱/表面活性剂/聚合物对模拟原油乳状液稳定动力学特性的影响机理。 结果表明,乳状液稳定模型可以很好的评价乳状液的稳定性,并得到乳状液的稳定动力学特性;碱浓度小于900 mg/L有利于乳状液的稳定,碱浓度大于900 mg/L不利于乳状液的稳定;表面活性剂和聚合物浓度的增加使得形成的模拟原油乳状液更加稳定;模拟原油乳状液的稳定作用主要是通过碱、表面活性剂降低油水界面张力并增加油水界面膜强度,聚合物通过提高界面膜强度实现的,三者存在协同效应。  相似文献   

4.
Zeta电位和界面膜强度对水包油乳状液稳定性影响   总被引:19,自引:0,他引:19  
通过对表面活性剂、聚合物溶液和煤油体系油水界面剪切黏度和油珠的Zeta电位的测定,考察了界面膜强度和Zeta电位对水包油乳状液稳定性的影响。在煤油、表面活性剂、聚合物聚丙烯酰胺(3530S)或其氧化降解聚合物体系中,含有3530S时,界面膜强度值最大,最大值大于0.10 mN/m,Zeta电位为-18.4 mV,绝对值最大,乳状液最稳定。结果表明,油水界面膜强度和油珠表面的Zeta电位对水包油乳状液稳定性影响较大。界面膜强度和Zeta电位绝对值较大时,乳状液最稳定;当界面膜强度相差不大时,Zeta电位绝对值大的乳状液较稳定,此时双电层对乳状液稳定性起主要作用;当Zeta电位相差不大时,界面膜强度大的乳状液较稳定,此时界面膜强度对乳状液稳定性起主要作用。研究还表明,机械或氧化降解后的聚合物体系,界面剪切黏度和Zeta电位绝对值变小,乳状液稳定性变差。  相似文献   

5.
贺拥军  齐随涛  赵世永 《化学进展》2007,19(9):1443-1448
本文在介绍常规乳状液、微乳液和固体稳定乳液的基础上,着重综述了纳米粒子稳定乳液的特点及其在纳米结构合成中的应用进展,并对目前该研究领域亟待解决的问题进行了分析。纳米粒子稳定乳液具有独特的油、水、固三相环境和水油、水固、油固三个相界面,分散相液滴尺寸可以在微米、亚微米乃至纳米尺度调节,因而可以作为合成组成、结构和性能极为丰富多样的纳米结构的介质。纳米粒子对乳液稳定作用的机理,以及纳米粒子稳定乳液中化学反应的特殊规律还有待深入研究。本文在介绍固体稳定乳液的基础上,着重综述了纳米粒子稳定乳液的特点及其在纳米结构合成中的应用进展,并对目前该研究领域亟待解决的问题进行了分析。纳米粒子稳定乳液具有独特的油、水、固三相环境和水油、水固、油固三个相界面,分散相液滴尺寸可以在微米、亚微米乃至纳米尺度调节,因而可以作为合成组成、结构和性能极为丰富多样的纳米结构的介质。纳米粒子对乳液稳定作用的机理,以及纳米粒子稳定乳液中化学反应的特殊规律还有待深入研究。  相似文献   

6.
正Pickering乳液是由吸附在水油两相界面上的颗粒稳定的乳状液,而这些颗粒的界面脱附往往需要很高的热力学脱附能,使得Pickering乳液具有良好的稳定性~1。相比于传统的表面活性剂稳定的乳液,颗粒在液液界面的存在不仅有效阻止了乳滴间的聚结合并,还赋予了乳液环境响应性,如pH、温度~2。因此,Pickering乳液被广泛应用于医药、催化、材料、能源、食品等领域~(3–5)。诸多颗粒被证明可以作为Pickering乳液的乳化剂,如二氧化硅纳米球、聚苯乙烯微球、碳酸钙颗粒等。除此以外,软颗粒稳定的Pickering乳液越来越引起了研究者的兴趣,而最具代表性的便是微凝胶粒子(microgel) ~6和蛋白质颗粒。  相似文献   

7.
利用阴阳离子表面活性剂复配技术,实现了高含水量原油体系的乳化及增粘.通过调整表面活性剂分子结构,解决了阴阳离子表面活性剂复配体系在油田模拟水中的溶解度问题.确定了相关体系高含水量油包水(W/O)乳状液的表面活性剂浓度,研究了可以产生高含水量油包水乳状液的油水混合体积比范围,并研究了温度、pH值、油水混合比例和离子强度对乳化及增粘作用的影响.获得了一系列具有优良乳化效果和乳状液稳定性的体系,其中部分体系粘度可增大80倍.这对于三次采油提高采收率有重要意义.  相似文献   

8.
利用阴阳离子表面活性剂复配技术,实现了高含水量原油体系的乳化及增粘. 通过调整表面活性剂分子结构,解决了阴阳离子表面活性剂复配体系在油田模拟水中的溶解度问题. 确定了相关体系高含水量油包水(W/O)乳状液的表面活性剂浓度,研究了可以产生高含水量油包水乳状液的油水混合体积比范围,并研究了温度、pH值、油水混合比例和离子强度对乳化及增粘作用的影响. 获得了一系列具有优良乳化效果和乳状液稳定性的体系,其中部分体系粘度可增大80倍. 这对于三次采油提高采收率有重要意义.  相似文献   

9.
烷基芳基磺酸钠对烷烃的乳化性能   总被引:5,自引:2,他引:3  
采用分水时间法考察了结构明确的高纯度烷基芳基磺酸钠在烷烃中的乳化现象。 以液态石蜡为油相,讨论了乳化剂浓度对乳状液稳定性的影响,确定了最适宜的乳化剂浓度,并研究了烷基链长度、芳基结构和芳基在烷基链位置对形成的乳状液稳定性的影响关系,考察了不同油相对乳状液稳定性的影响。 结果表明,最适宜的乳化剂质量分数为0.1%;当固定芳基结构时,随着烷基链上碳数的增加,乳状液稳定性线性增强;当固定烷基链碳数时,随着芳基上碳原子的增加,乳状液稳定性增强;随着芳基位置向烷基链中间位置移动,乳状液稳定性增强;随着油相分子量的增加,能形成稳定乳状液所需的乳化剂的分子量随之递增。  相似文献   

10.
功能化磁性纳米粒子因其独特的理化性质,在乳状液制备与破乳领域的应用受到广泛关注。本文归纳了功能化磁性纳米粒子的制备方法、合成结构与特征性质,阐述了其在乳状液制备及破乳中的应用过程,重点分析了磁性纳米粒子在溶液中良好分散、稳定吸附于油水界面排布为膜结构的作用行为,尤其是磁性纳米粒子的磁响应特征对乳状液中界面性质、液滴形貌及运动状态的影响,并进一步总结出其表面性质及作用行为对稳定乳状液或使乳状液破乳的规律。针对磁性纳米粒子对乳状液稳定性影响规律的探究可为其在应用领域提供理论支持。最后本文就功能化磁性纳米粒子研究中亟待解决的新问题作出展望。  相似文献   

11.

Abstract  

Oil-in-water emulsions can be stabilized by solid particles. These so-called Pickering emulsions are regularly used in many technological applications. Here we describe the efficiency of sol–gel-synthesized anatase nanoparticles with a diameter of 6 nm in stabilizing emulsions. Key parameters were the surface charge of the particles—depending on pH and salt concentration—and their contact angle—depending on the surface groups and the polarity of the oil phase. The effect of these properties on the stability of the emulsions was investigated. The sol–gel nanoparticles were most efficient in stabilizing emulsions at pH 3 (depending on the salt and particle concentration). Highly apolar oil phases (cyclohexane, n-hexane) were required to obtain stable emulsions with the investigated system and addition of salt or hydrophobic coupling molecules in the oil phase, such as long alkyl chain containing phosphonates, increased the stability of the emulsions.  相似文献   

12.
The solid particles or polymers were often solely used to stabilizing emulsions, as an interesting alternative to classical used emulsifiers. However, a united use of them and the relation between them at stabilizing emulsions were little reported. Our previous study showed that the preparation of microspheres containing zedoary turmeric oil (ZTO, as an oily drug), Aerosil200 particles and hydroxypropyl methylcellulose acetate succinate (HPMCAS). ZTO emulsions were produced when the microspheres were immersed into aqueous media and disaggregated under gentle agitation, and were stabilized by Aerosil200 particles and HPMCAS. Nevertheless, more work needs to be carried out to explain the factor affecting emulsification efficiency of microspheres, which will facilitate the design of the microsphere formulation. Thus, in this study, we dealt with a system consisting of Aerosil, HPMCAS, ZTO and water. To predict the best ratio of Aerosil/polymer and thus obtain the best satisfying ZTO emulsions, the bonding studies were carried out with Aerosil and HPMCAS. A series of emulsions was prepared and the stability and droplet size of resultant emulsions were investigated. The results indicated two kinds of HPMCAS (HPMCAS-LG and -HG) showed the different affinity for Aerosil200, which resulted in the unlike capability to stabilize emulsions when at the same Aerosil/polymer ratio. The stability and droplet size of emulsions increased on increasing the ratio Aerosil to polymer, and the best ratio was predictable from the Langumuir-fit of the adsorption isotherms. Appropriate hydrophilicity and hydrophobicity with Aerosil particles were very important to stabilizing the ZTO emulsions.  相似文献   

13.
Particle-stabilized dispersions such as emulsions, foams and bubbles are catching increasing attentions across a number of research areas. The adsorption mechanism and role of these colloidal particles in stabilizing the oil-water or gas-water interfaces and how these particles interact at interfaces are vital to the practical use of these dispersion systems. Although there have been intensive investigations, problems associated with the stabilization mechanisms and particle-particle interactions at interfaces still remain to explore. In this paper, we first systematically review the historical understanding of particle-stabilized emulsions or bubbles and then give an overview of the most important and well-established progress in the understanding of particle-stabilized systems, including emulsions, foams and liquid marbles. The particle-adsorption phenomena have long been realized and been discussed in academic paper for more than one century and a quantitative model was proposed in the early 1980s. The theory can successfully explain the adsorption of solid particles onto interface from energy reduction approaches. The stability of emulsions and foams can be readily correlated to the wettability of the particles towards the two phases. And extensive researches on emulsion stability and various strategies have been developed to prepared dispersion systems with a certain trigger such as pH and temperature. After that, we discuss recent development of the interactions between particles when they are trapped at the interface and highlight open questions in this field. There exists a huge gap between theoretical approaches and experimental results on the interactions of particles adsorbed at interfaces due to demanding experimental devices and skills. In practice, it is customary to use flat surfaces/interfaces as model surfaces to investigate the particle-particle at interfaces although most of the time interfaces are produced with a certain curvature. It is shown that the introduction of particles onto interfaces can generate charges at the interfaces which could possibly account for the long range electrostatic interactions. Finally, we illustrate that particle-stabilized dispersions have been found wide applications in many fields and applications such as microcapsules, food, biomedical carriers, and dry water. One of the most investigated areas is the microencapsulation of actives based on Pickering emulsion templates. The particles adsorbed at the interface can serve as interfacial stabilizers as well as constituting components of shells of colloidal microcapsules. Emulsions stabilized by solid particles derived from natural and bio-related sources are promising platforms to be applied in food related industries. Emulsion systems stabilized by solid particles of the w/w (water-in-water) feature are discussed. This special type of emulsion is attracting increasing attentions due to their all water features. Besides of oil-water interface, particle stabilized air-water interface share similar stabilization mechanism and several applications reported in the literature are subsequently discussed. We hope that this paper can encourage more scientists to engage in the studies of particle-stabilized interfaces and more novel applications can be proposed based on this mechanism  相似文献   

14.
Stable carbon dioxide-in-water emulsions were formed with silica nanoparticles adsorbed at the interface. The emulsion stability and droplet size were characterized with optical microscopy, turbidimetry, and measurements of creaming rates. The increase in the emulsion stability as the silica particle hydrophilicity was decreased from 100% SiOH to 76% SiOH is described in terms of the contact angles and the resulting energies of attachment for the silica particles at the water-CO(2) interface. The emulsion stability also increased with an increase in the particle concentration, CO(2) density, and shear rate. The dominant destabilization mechanism was creaming, whereas flocculation, coalescence, and Ostwald ripening played only a minor role over the CO(2) densities investigated. The ability to stabilize these emulsions with solid particles at CO(2) densities as low as 0.739 g/mL is particularly relevant in practical applications, given the difficulty in stabilizing these emulsions with surfactants, because of the unusually weak solvation of the surfactant tails by CO(2).  相似文献   

15.
Oil-in-water (o/w) emulsions of styrene, as monomer oil in water, were achieved successfully via Pickering emulsification with laponite nanoparticles as the sole inorganic stabilizers. The formed emulsions showed excellent stability not only against droplets coalescence (before polymerization) but also against microparticles coagulation (after polymerization). Generally, the number of composite polystyrene microparticles (PS) increased and their sizes decreased with the content of solid nanoparticles used in stabilizing the precursor o/w emulsions. This is consistent with the formation of rigid layer(s) of the inorganic nanoparticles around the PS microparticles thus a better stability was achieved. The composite microparticles were characterized using various techniques such as surface charge, stability, transmission electron microscope (TEM), scanning electron microscope (SEM) and Fourier transform infra-red (FT-IR). Coating films of the prepared latexes were applied to flat glass surfaces and showed reasonable adhesion compared to PS latex particles prepared with conventional surfactants. The effect of employed conditions on the features of the resulting emulsions in terms of stability and particle size has been discussed.  相似文献   

16.
Water and oil transport in emulsified systems is far from being elucidated. Calorimetric analysis has proved to be an appropriate technique to study composition ripening in mixed water in oil emulsions. In this article, the role of the stabilizing agent is studied and particular attention is given to emulsions stabilized solely with solid particles. Mixed emulsions are prepared by mixing two simple water-in-oil (W/O) emulsions, one with pure water droplets and one with droplets containing an aqueous urea solution. At different time intervals, a sample is introduced in a calorimeter cell and submitted to successive cooling and heating cycles. During the cooling phase, the aqueous internal phase solidifies at a temperature which depends on its composition. Just after the mixed emulsion was prepared, the calorimetric experiment identified two solidification peaks, one corresponding to pure water droplets, and the other one to urea solutions. After a long enough stabilization time, just one peak was observed, showing that the systems evolved toward one type of droplets characterized by a unique composition, due to water transfer between the two aqueous phases. The effect of emulsion stabilizing agent (particles or nonionic emulsifier) on the kinetics of water transfer was investigated.  相似文献   

17.
Unmodified Fe(3)O(4) nanoparticles do not stabilize Pickering emulsions of a polar oil like butyl butyrate. In order to obtain stable emulsions, the Fe(3)O(4) nanoparticles were modified by either carboxylic acid (RCOOH) or silane coupling agents (RSi(OC(2)H(5))(3)) to increase their hydrophobicity. The influence of such surface modification on the stability of the resultant Pickering emulsions was investigated in detail for both a non-polar oil (dodecane) and butyl butyrate in mixtures with water. The stability of dodecane-in-water emulsions in the presence of carboxylic acid-coated particles decreases as the length of the alkyl group (R) and the coating extent increase. However, such particles are incapable of stabilizing butyl butyrate-water emulsions even when the carboxylic acid length is decreased to two. However, the silane-coated Fe(3)O(4) nanoparticles can stabilize butyl butyrate-in-water emulsions, and they also increase the stability of dodecane-in-water emulsions. Thermal gravimetric analysis indicates that the molar quantity of silane reagent is much higher than that of carboxylic acid on nanoparticle surfaces after modification, raising their hydrophobicity and enabling enhanced stability of the resultant polar oil-water emulsions.  相似文献   

18.
The possibilities of stabilizing emulsions by means of proteins and polysaccharides have been discussed. It is shown that the use of anionic polysaccharides makes it possible to increase considerably the stability of protein-containing emulsions. The developed methods of stabilizing emulsions by means of anionic polysaccharides are protein-universal and useful for the preparation of emulsions based on phases of different polarity. The use of these methods allows to avoid the use of low-molecular surfactants for the preparation of protein-containing C/W emulsions.  相似文献   

19.
20.
The effect exerted by adsorption of nonionic surfactants on the stabilizing ability of latexes in preparation of epoxy emulsions and on the structural-rheological properties of these emulsions was examined. The stabilizing effect was attributed to heterostabilization of particles of the mixed dispersed phase and to the strength of the structural framework formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号