首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We have determined triplet quenching efficiencies. radical yields and radical recombination kinetics in mixed chlorophyll (Chl)-egg phosphatidylcholine vesicle suspensions in the presence of electrically-charged electron acceptors located either in the external. continuous aqueous phase or within the internal aqueous volume of the vesicles. There was a marked asymmetry between these processes as to whether they occurred at the outer or inner bilayer-water interfaces. With methyl viologen (MV2+) as acceptor, 52 ± 4% of the total Chl triplet could be quenched from the inside. whereas only 16 ± 2% was quenchable from the outside. Approximately 35% of the triplet population was inacccssible to quenching by MV2+ from either inside or outside. Ouenching rate constants were higher from the outside than from the inside (2 × 106M?lS-Ivs 1 × 106M?Is?1). A similar pattern was obtained when anthraquinone disulfonate or ferricyanide were used as acceptors. Radical yields and recombination kinetics also displayed asymmetric behaviour. From the inside. only 4 ± 2% of the quenched triplets gave rise to separated radicals using MV2+ as acceptor, whereas from the outside the conversion yield was 32 ± 2%. The halftime for the Chl+ MV+ reaction was approximately 100 times longer at the outer surface than at the inner surface. We conclude the following: (a) Chl is distributed asymmetrically within the bilayer such that more triplet Chl is located within quenching distance of the interface at the inner surface than at the outer surface. Furthermore, an appreciable fraction of the triplet Chl is located sufficiently far from either interface so that quenching is not possible. (b) The mobility of Chl and quencher molecules is greater at the outer surface of the vesicles than at the inner surface.  相似文献   

2.
Abstract The effects of electrostatic surface charge and valinomycin addition in the presence of K* on the kinetics and the inside-outside asymmetry properties of light-induced electron transfer reactions between chlorophyll triplet state and benzoquinone, ferricyanide and methyl viologen in large unilamellar vesicles have been investigated using laser flash photolysis. Modifying the surface charge of the bilayers by incorporating charged surfactants or decreasing the ionic strength of the suspending medium caused large changes in the dynamics of the electron transfer reactions, which could be interpreted in terms of electrostatic interactions between reactants, products and membrane components, and the existence of a spontaneous transmembrane electrical potential corresponding to an excess of negative charge at the outer surface of the vesicle bilayer. The presence of valinomycin had more specific effects on these reactions, which were consistent with an electrostatic influence of the presence of the positively-charged K+-valinomycin complex within the bilayer on the dynamics of only those triplet quenching and radical formation and decay processes which occur in this region of the vesicle structure.  相似文献   

3.
Abstract— Cytochrome c has been shown to bind via electrostatic interactions to egg phosphatidylcholine vesicles which contain 5–30 mol percent of negatively-charged surfactant (dihexadecylphosphate) in a low ionic strength medium. Under these conditions the oxidized cytochrome can function as a direct one-electron acceptor from membrane-bound triplet state chlorophyll to produce chlorophyll cation radical and reduced cytochrome. Kinetic experiments using laser flash photolysis have demonstrated that triplet quenching and the yield of electron transfer products increase, and product lifetime decreases, with an increase in the magnitude of the negative charge on the vesicles, and with a decrease in the ionic strength of the medium. Both triplet quenching and product formation rates and yields showed saturation behavior as the cytochrome concentration was increased, and reached limiting values at 20–30 μM cytochrome when the vesicle contained 20 mol percent of the negatively-charged surfactant. This behavior is interpreted in terms of saturation of the vesicle surface binding sites. Under optimum conditions in this system, approximately 20% of the chlorophyll triplet molecules could be converted to electron transfer products which had a halftime for the reverse reaction of approximately 1.5 ms.  相似文献   

4.
The process of vesicle solubilization and size growth by detergents, especially by octylglucoside, was examined in detail in order to elucidate the phenomena observed in the vesicle-to-micelle transition and to clarify the size-determining factor of vesicles prepared by removing detergent from phospholipid–detergent mixed micelles. In the vesicle solubilization process, when the detergent concentration in the vesicle membrane reached a critical value, the collapse of large unilamellar vesicles (LUV) into small unilamellar vesicles (SUV) was observed. This newly appeared SUV were named SUV*. The SUV* could be produced by adding an appropriate amount of detergent to the SUV prepared by an ultrasonication method so as to increase the concentration to a little over the critical value, such as, in the case of adding octylglucoside, a molar ratio of 1.0–1.1 to phospholipid in the membrane phase. The SUV* containing octylglucoside were fusible and grow time-dependently, but those containing sodium cholate were not fusible. On the basis of the SUV* data, the following problems were solved: the variety of the size of the vesicles prepared by detergent removal from mixed micelles composed of a phospholipid and different detergents, or by different removal methods; the complex appearance of turbidity or vesicle size observed in vesicle destruction and formation; the conflict between LUV and SUV in the partition behavior of detergent and the size change with addition of detergent.  相似文献   

5.
Laser flash photolysis has been used to determine the kinetics of cytochrome c reduction by chlorophyll triplet state in negatively-charged lipid bilayer vesicles, as mediated by quinones. Large synergistic enhancements in the yield of reduced cytochrome were obtained using a pair of quinones, one of which was lipophilic (e.g. benzoquinone, 2,6-di-f-butylbenzoquinone) and the other of which was hydrophilic (e.g. l,2-naphthoquinone-4-sulfonate). The mechanism was shown to involve initial quenching of the triplet by the membrane-associated quinone to form chlorophyll cation radical and quinone anion radical. An interquinone electron transfer process followed this reaction, which occurred at the membrane-water interface, and greatly facilitated electron transport from within the bilayer to the aqueous phase. This process formed the basis of the synergistic effect. Cytochrome c reduction occurred in the water phase by reaction with the anion radical of the hydrophilic quinone. Finally, the reduced cytochrome was reoxidized by a slow reaction with chlorophyll cation radical. Under the most favorable conditions, we estimate that the quantum yield of conversion of triplet quenching events to reduction of cytochrome approached unity. The lifetime of the reduced protein and oxidized chlorophyll could be as long as 140 ms, under the best conditions. This system has properties which are thus quite favorable for solar energy conversion in a biomimetic process.  相似文献   

6.
Abstract— The primary and secondary electron transfer reactions which occurred upon laser flash photolysis of electrically neutral and positively-charged lipid bilayer vesicles containing chlorophyll, benzoquinone and cytochrome c were determined by time-resolved difference spectral and kinetic measurements, and compared with previous results obtained with negatively-charged vesicles (Y. Fang and G. Tollin, Photochem. Photobiol. 1988). The extent to which oxidized cytochrome c could function as an electron acceptor from triplet state chlorophyll, and reduced cytochrome c could act as an electron donor to chlorophyll cation radical, decreased from negatively-charged to electrically neutral to positively-charged vesicles, in agreement with expectations based on changes in the ability of cytochrome c to bind to the bilayer. In all three types of vesicles, cytochrome c reduction by benzoquinone anion radical occurred in the aqueous phase.  相似文献   

7.
Abstract— In negatively-charged lipid bilayer vesicles prepared in deionized water from egg phosphatidylcholine and 25 mol % of α-eleostearic acid, and containing chlorophyll a, benzoquinone, and cytochrome c, primary electron transfer after a laser flash occurred principally from chlorophyll triplet to benzoquinone, and to a smaller extent from chlorophyll triplet to oxidized cytochrome c. Several secondary electron transfer reactions occurred subsequent to this. The most rapid of these was electron transfer from reduced cytochrome c, which was bound to the outer surface of the negatively-charged vesicle, to chlorophyll cation radical (k= 3.9 times 103 s-1). Subsequent to this, the cation radical was reduced by benzoquinone anion radical (k= 1.6 times 102 s-1>) and bound oxidized cytochrome c was reduced by the remaining anion radical which was expelled into the aqueous phase by the negative charge on the vesicle surface. This latter reaction occurred at the membrane-solution interface with an observed rate constant (k= 60 s-1) two orders of magnitude smaller than cytochrome oxidation. Net reduced cytochrome c was produced in this process. The reduced cytochrome c was slowly reoxidized by benzoquinone (k= 17 s-1) and the system was returned to its original state. When the vesicle system was made slightly basic by adding tris(hydroxymethyl)aminomethane, the rates of both the reverse electron transfer between chlorophyll cation radical and benzoquinone anion radical (k= 5 times 102 s-1) and the oxidation of reduced cytochrome c by chlorophyll cation radical (k= 9.4 times 103 s-1) were accelerated. The rate of reduction of oxidized cytochrome c by benzoquinone anion radical remained approximately the same.  相似文献   

8.
Spinach plastocyanin is bound to egg phosphatidylcholine vesicles containing 5–25 mole percent dioctadecyldimethylammonium chloride (DODAC) via electrostatic interactions in a 50 mM betaine medium (pH=6.5). This was demonstrated by both gel filtration experiments and kinetic results using laser flash photolysis. Under those conditions, oxidized plastocyanin can function as a direct electron acceptor from membrane-bound triplet chlorophyll to produce chlorophyll cation radical and reduced plastocyanin. The fraction of chlorophyll triplet which is quenched by oxidized plastocyanin increases, and the yield of electron transfer products also increases, with an increase in the magnitude of the positive charge on the vesicles. Product decay and rise halftimes decrease with an increase in the mole percent of DODAC+ incorporated into egg phosphatidylcholine vesicles. However, both of these halftimes are independent of oxidized plastocyanin concentration. Even though ~50% of the Chi triplets were quenched, no electron transfer product formation was observed in 5 mM phosphate buffer (pH=7.0). Under similar conditions in betaine, approximately 13% of the Chi triplets could be converted into products.  相似文献   

9.
The hydrolytic activity of phosphatidylinositol (PI)-specific phospholipase C (PI-PLC) from Bacillus thuringiensis was studied in detail toward mixed liposomes consisting of PI and one of other phospholipids and cholesterol. Among PI-liposomes, small unilamellar vesicles (SUV) were the most sensitive to PI-PLC; the enzymatic hydrolysis of PI in SUV was not less than 10-fold that in large unilamellar vesicles (LUV) or in multilamellar vesicles (MLV). Thus, in a survey of the effects of coexisting lipids on PI-PLC activity, PI-SUV was used. Phosphatidylcholine (PC) was stimulative for the enzyme activity toward PI-SUV at any molar ratio of PC to PI. Also, the effects of the addition of sphingomyelin (SM), phosphatidylethanolamine (PE) and cholesterol on the enzymatic hydrolysis of PI were studied in detail on the basis of concentration of total lipids or PI.  相似文献   

10.
Abstract The quenching of the triplet state of chlorophyll a (Chl) by asymmetrically located electron acceptors was examined in vesicle systems containing egg yolk phosphatidylcholine and 0–50 mole % cholesterol. The incorporation of cholesterol had two main effects: (1) the distribution of Chl within the vesicle wall shifted from one favoring the inner monolayer to one favoring the outer monolayer, and (2) the Chi molecules (both ground and excited states) became more accessible to water and to the quencher molecules. This latter property was probably due to the creation of space between the phospholipid head groups by insertion of cholesterol. These phenomena required cholesterol concentrations in excess of 15 mol %. In general, the addition of cholesterol caused increases in the apparent bimolecular rate constant for triplet quenching, in the probability that quenching produced radicals, and in the rate of radical recombination. Some of the specific effects of cholesterol depended upon whether or not the quencher molecules were amphiphilic.  相似文献   

11.
The fluorescence quenching of 6-propionyl-2-dimethylaminonaphtalene (PRODAN) and 6-dodecanoyl-2-dimethylaminonaphtalene (LAURDAN) by octadecyl rhodamine B (ORB) in a model system of small unilamellar vesicles (SUV) of dipalmitoylphosphatidyl-choline (DPPC) was investigated. Non-linear Stern-Volmer behaviour was observed in both systems in the gel phase (25 degrees C) and in the fluid phase (50 degrees C), resulting from association processes and from static quenching. The relative quenching efficiencies of both dyes depend on the phase state of the bilayer and indicate a deeper incorporation of PRODAN and LAURDAN into the membrane in its fluid phase than in its gel phase.  相似文献   

12.
Study of the mechanism of action of anti-inflammatory drugs (NSAIDs) and their side-effects may fall in the domain of membranology. In this work the extent of the interaction between an NSAID (nimesulide) and membrane phospholipids was quantified by the partition coefficient, Kp , using egg phosphatidylcholine (EPC) liposomes as cell membrane models. The liposome/aqueous phase partition coefficients were determined under physiological conditions, by derivative spectrophotometry and fluorescence quenching. Derivative spectrophotometry allows elimination of background signal effects (light scattering) due to the presence of liposomes. Theoretical models, accounting for simple partition of the NSAID between two different media, were used to fit the experimental data, allowing the determination of Kp in multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs). The location of nimesulide in MLVs and LUVs was evaluated by fluorescence quenching using spectroscopic probes located at different sites on the membrane. All n-AS probes were quenched and the relative quenching efficiencies were ordered as 2-AS<6-AS9-AS<12-AS; this suggests the drug is deeply buried in the membrane. Fluorescence quenching using the 12-AS probe was also used to determine the partition coefficient of the drug in MLVs and LUVs. The two techniques yield similar results. Finally, measurement of zeta-potential in the presence of different concentrations of nimesulide was performed to investigate possible changes in the zwitterionic phosphatidylcholine membranes. The membrane surface potential was not altered, which seems to be an indication that nimesulide binds to lipid bilayer mostly by hydrophobic interactions.  相似文献   

13.
 We evaluated the hydrolysis of egg yolk phosphatidylcholine (PC) by phospholipase D from Streptomyces chromofuscus (PLD) in small unilamellar vesicles (SUV) in presence of 50 μM Ca2+. After initial choline production (hydrolysis of 1.5% of the PC at the outer leaflets of the vesicle bilayers), the hydrolysis was reduced to 5% of the initial velocity. The kinetic behavior in SUV of premixed PC and a low percentage of the hydrolysis product, phosphatidic acid (PA), was similar to that of PC SUV. The reduced velocity disappeared when the membrane structure was disintegrated by means of a nonionic surfactant. In the retardation phase, the partially hydrolyzed vesicles (postsubstrates) had much higher affinity for PLD than fresh PC SUV. These results indicated that small clusters of the product, PA, at the vesicle surface were responsible for the reduced velocity of hydrolysis. The initial velocity increased in a biphasic manner with the substrate concentration. At a PC concentration range up to 4 mM, the experimental data fit Michaelis–Menten kinetics. At concentrations above 6 mM, the velocity again markedly increased. Negatively charged mixed vesicles of PC and PA did not have such kinetics. Furthermore, adding PC SUV to the postsubstrates, where the fraction of free PLD was less than 0.05, induced steep choline production. These results showed that PLD bound to vesicles had higher activity than free PLD. We speculated that PLD bound to vesicles collided with and was directly transferred to PC SUV when the fraction of free PLD in aqueous medium was very small. Received: 5 November 1996 Accepted: 26 February 1997  相似文献   

14.
Several techniques are available for making large unilamellar vesicles (LUV) with an average diameter of approximately 100 nm, widely employed as model biomembranes as well as vehicles for drug delivery. Here we describe the use of adaptive focused ultrasound (AFU) for the preparation of LUV from multilamellar vesicles (MLV) and studied the effects of ultrasound intensity and number of cycles per burst (CPB) on the average size of vesicles produced. CPB determines the duration of the intermittent pressure wavetrains emitted by the transducer, and the corresponding relaxation periods. Preliminary experiments indicated that CPB controls the size of vesicles assembling after the disruption of MLV by ultrasound and optimum values for obtaining LUV could be iterated. The sizes and lamellarity of LUV were assessed by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), and fluorescence quenching. AFU provides a simple and easy to use approach for making liposomes with several advantages: it is minimally invasive and involves no loss of material. Precisely controlled wavelengths are employed with a significant reduction in the presence of hot spots, which could destroy some biological materials of interest.  相似文献   

15.
Herein, we investigate the behavior of the electroactive molecular probe 6‐propionyl‐2‐dimethyl amino naphthalene (PRODAN) in large unilamellar vesicles (LUV) formed with the phospholipid 1,2‐di‐oleoyl‐sn‐glycero‐3‐phosphatidylcholine (DOPC) by using cyclic voltammetry (CV). The CV studies in pure water confirm our previous spectroscopic results that PRODAN self‐aggregates due to its low water solubility. Moreover, the electrochemical results also reveal that the PRODAN aggregated species are non‐electroactive within the studied electrochemical potential region. In DOPC LUV media, the redox behavior of PRODAN shows how the LUV bilayer interacts with PRODAN aggregated species to form PRODAN monomer species. Moreover, the electrochemical response of PRODAN allows us to propose a model for explaining the electrochemical experimental results and—in conjunction with our measurements—for calculating the value of the partition constant (Kp) of PRODAN between the water and LUV bilayer pseudophases. This value coincides with that obtained through an independent technique. Moreover, our electrochemical model allows us to calculate the diffusion coefficient (D) for the DOPC LUV, which coincides with the D value obtained through dynamic light scattering (DLS). Thus, our data clearly show that electrochemical measurements could be a powerful alternative approach to investigate the behavior of nonionic electroactive molecules embed in a confined environment such as the LUV bilayer. Moreover, we believe that this approach can be used to investigate the behavior of non‐optical molecular drugs embedded in bilayer media.  相似文献   

16.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

17.
The effects of sub-solubilizing concentrations of sodium cholate (Na-chol) on several physicochemical properties of phosphatidylcholine (PC) small unilamellar vesicles (SUV) were considered in connection with the initial stage of membrane solubilization. ESR spectra of 12-doxylstearic acid (12-DS) in phosphatidylcholine from egg yolk (EPC) or dimyristoylphosphatidylcholine (DMPC) SUV at low concentrations (insufficient to destroy the vesicles) of Na-chol were composed of two (a strongly immobilized and an additional weakly immobilized) immiscible components. The origin of the additional bands was phase separation which occurred in the hydrophobic parts of PC SUV in the presence of Na-chol. Differential scanning calorimetry measurements demonstrated that the mixed DMPC/Na-chol SUV possessed two (a sharp low-temperature and a broad high-temperature) endothermic peaks, which is consistent with the coexistence of two immiscible phases in the vesicular membranes. zeta Potentials of the EPC/Na-chol SUV revealed that high anionic densities appeared on the surfaces of the SUV at a Na-chol concentration slightly below the upper boundary of the vesicle region. Thus, the initial stage of the solubilization of PC SUV by Na-chol was caused by the aggregation of hydrophobic parts of PC membranes, followed by the occurrence of high anionic densities on the surfaces of the vesicles. The fact that removal of Na-chol from PC/Na-chol mixed systems preferentially resulted in the formation of small vesicles might originate from these anionic charges.  相似文献   

18.
Acinetobacter haemolyticus is an antibiotic resistant, pathogenic bacterium responsible for an increasing number of hospital infections. Acinetoferrin (Af), the amphiphilic siderophore isolated from this organism, contains two unusual trans-2-octenoyl hydrocarbon chains reminiscent of a phospholipid structural motif. Here, we have investigated the membrane affinity of Af and its iron complex, Fe-Af, using small and large unilamellar phospholipid vesicles (SUV and LUV) as model membranes. Af shows a high membrane affinity with a partition coefficient, K(x)= 6.8 x 10(5). Membrane partitioning and trans-membrane flip-flop of Fe-Af have also been studied via fluorescence quenching of specifically labeled vesicle leaflets and (1)H NMR line-broadening techniques. Fe-Af is found to rapidly redistribute between lipid and aqueous phases with dissociation/partitioning rates of k(off) = 29 s(-1) and k(on) = 2.4 x 10(4) M(-1) s(-1), respectively. Upon binding iron, the membrane affinity of Af is reduced 30-fold to K'(x) = 2.2 x 10(4) for Fe-Af. In addition, trans-membrane flip-flop of Fe-Af occurs with a rate constant, k(p) = 1.2 x 10(-3) s(-1), with egg-PC LUV and a half-life time around 10 min with DMPC SUV. These properties are due to the phospholipid-like conformation of Af and the more extended conformation of Fe-Af that is enforced by iron binding. Remarkable similarities and differences between Af and another amphiphilic siderophore, marinobactin E, are discussed. The potential biological implications of Af and Fe-Af are also addressed. Our approaches using inner- and outer-leaflet-labeled fluorescent vesicles and (1)H NMR line-broadening techniques to discern Af-mediated membrane partitioning and trans-membrane diffusion are amenable to similar studies for other paramagnetic amphiphiles.  相似文献   

19.
To assess the affinity of psychotropic phenothiazine drugs, triflupromazine (TFZ) and chlorpromazine (CPZ), for the membranes of central nervous system and the other organs in the body, the partition coefficients (Kps) of these drugs to phosphatidylcholine (PC)-phosphatidylserine (PS) and PC-phosphatidylethanolamine (PE) small and large unilamellar vesicles (SUV, LUV) were examined by a second-derivative spectrophotometric method, since PS is abundantly contained in the membranes of the central nervous system and PE is distributed widely in the membranes of the organs in the body. Size and preparation methods of the vesicles did not affect the Kp values at each aminophospholipid content suggesting that the partition of the phenothiazine drugs was not affected by the structural differences in the vesicles such as their curvature or asymmetric distribution of the phospholipids between the outer and inner layers of the bilayer membranes. However, the Kp values of both drugs increased remarkably according to the PS content in the bilayer membranes, i.e., the Kp values for the vesicles of 30 mol% PS content were about 3 times of that for the vesicles of PC alone, while both Kp values slightly reduced with the increase in the content of PE in the bilayer membranes of PC-PE vesicles. The results indicate that both drugs have higher affinity for the PC-PS bilayer membranes than for the PC and PC-PE membranes, which can offer an evidence for the fact that TFZ and CPZ are predominantly distributed and accumulated in the brain and nerve cell membranes that contain PS abundantly.  相似文献   

20.
The fate of excitation energy and electron transfer to quinones within Chl-a-containing phosphatidyl choline liposomes has been investigated. The bilayer membrane of the liposome stabilizes the Chl triplet state, as evidenced by a three-fold increase in the lifetime over that observed in ethanol solution. The relative triplet yield follows the relative fluorescence yield, indicative of quenching at the singlet level. Triplet state lifetimes are markedly shortened as the Chl concentration is increased, demonstrating that quenching occurs at the triplet level as well. This process is shown to be due to a collisional de-excitation. In the presence of quinones, the Chl triplet reduces the quinone resulting in production of long-lived electron transfer products. The percent conversion of Chl triplet to cation radical when benzoquinone is employed as acceptor is approximately 60 ± 10%, which is slightly less than in ethanol solution (70 ± 10%). The lifetime of the radical, however, can be as much as 1900 times longer. With respect to potentially useful photochemical energy conversion, the magnitude of this increased lifetime is far more significant than is the decreased radical yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号