首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Two new thioantimonates [M(dap)3]Sb4S7 (M = Ni2+ ( 1 ) and Co2+ ( 2 )) were synthesized under solvothermal conditions by the reaction of NiS (or Co metal), Sb and S in an aqueous solution of 1,2‐diaminopropane (dap). Compounds 1 and 2 are isostructural. The polymeric [Sb4S72?]n anion is composed of two SbS3 trigonal pyramids and two SbS4 units. The SbS3 and SbS4 units are interconnected by corners and edges to build a 2‐D puckered layer with Sb4S4 and Sb16S16 heterorings. The apertures of the large Sb16S16 hetero‐rings are filled by two [M(dap)3]2+ complex cations which serve as template ions. The band gaps of 2.44 eV for 1 and 2.43 eV for 2 have been estimated from optical absorption spectra.  相似文献   

2.
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7]2−, but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)4NH3)[Sb4S7] (1) contains [Sb4S7]2− double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)2[Sb4S7] (T=CH3(CH2)2NH2(2), (CH3)2CHNH2(3), CH3(CH2)3NH2(4) and CH3(CH2)4NH2(5)) adopt a more complex structure in which [Sb3S8]7− units are linked by SbS33− pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7]2− anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density.  相似文献   

3.
Four new thioantimonates(III) with compositions [(C3H10NO)(C3H10N)][Sb8S13] ( 1 ) (C3H9NO = 1‐amino‐3‐propanol, C3H9N = propylamine), [(C2H8NO)(C2H8N)(CH5N)][Sb8S13] ( 2 ) (C2H7NO = ethanolamine, C2H7N = ethylamine, CH5N = methylamine), [(C6H16N2)(C6H14N2)][Sb6S10] ( 3 ) (C6H14N2 = 1,2‐diaminocyclohexane) and [C8H22N2][Sb4S7] ( 4 ) (C8H20N2 = 1,8‐diaminooctane) were synthesized under solvothermal conditions. Compound 1 : triclinic space group P$\bar{1}$ , a = 6.9695(6) Å, b = 13.8095(12) Å, c = 18.0354(17) Å, α = 98.367(11), β = 96.097(11) and γ = 101.281(11)°; compound 2 : monoclinic space group P21/m, a = 7.1668(5), b = 25.8986(14), c = 16.0436(11) Å, β = 96.847(8)°; compound 3 : monoclinic space group P21/n, a = 11.6194(9), b = 10.2445(5) Å, c = 27.3590(18) Å, β = 91.909(6)°; compound 4 : triclinic space group P$\bar{1}$ , a = 7.0743(6), b = 12.0846(11), c = 13.9933(14) Å, α = 114.723(10), β = 97.595(11), γ = 93.272(11)°. The main structural feature of the two atoms thick layered [Sb8S13]2– anion in 1 are large nearly rectangular pores with dimensions 11.2 × 11.7 Å. The layers are stacked perpendicular to [100] to form tunnels being directed along [100]. In contrast to 1 the structure of 2 contains a [Sb8S13]2– chain anion with Sb12S12 pores measuring about 8.9 × 11.5 Å. Only if longer Sb–S distances are considered as bonding interactions a layered anion is formed. The chain anion [Sb6S10]2– in compound 3 is unique and is constructed by corner‐sharing SbS3 pyramids. Two symmetry‐related single chains consisting of alternating SbS3 units and Sb3S3 rings are bound to Sb4S4 rings in chair conformation. Finally, in the structure of 4 the SbS3 and SbS4 moieties are joined corner‐linked to form a chain of alternating SbS4 units and (SbS3)3 blocks. Neighboring chains are connected into sheets that contain relatively large Sb10S10 heterorings. The sheets are further connected by sulfur atoms generating four atoms thick double sheets.  相似文献   

4.
Four new thioantimonate(III) compounds with the general formula [TM(tren)]Sb4S7, TM = Mn 1 , Fe 2 , Co 3 and Zn 4 , were synthesized under solvothermal conditions by reacting elemental TM, Sb and S in an aqueous solution of tren (tren = tris(2‐aminoethyl)amine). All compounds crystallize in the monoclinic space group P21/n with four formula units in the unit cell. Single crystal X‐ray analyses of 1 [a = 8.008(2), b = 10.626(2), c = 25.991(5) Å, β = 90.71(3)°, V = 2211.4(8) Å3], 2 [a = 8.0030(2), b = 10.5619(2), c = 25.955(5) Å, β = 90.809(3)°, V = 2193.69(8) Å3], 3 [a = 7.962(2), b = 10.541(2), c = 25.897(5) Å, β = 90.90(3)°, V = 2173.0(8) Å3] and 4 [a = 7.978(2), b = 10.625(2), c = 25.901(5) Å, β = 90.75(3)°, V = 2195.2(8) Å3] reveal that the compounds are isostructural. The [Sb4S7]2‐ anions are composed of three SbS3 trigonal pyramids and one SbS4 unit as primary building units (PBU). The PBUs share common edges and corners to form semicubes (Sb3S4) which may be regarded as secondary building units (SBU). The SBUs and SbS3 pyramids are joined in an alternating fashion yielding the equation/tex2gif-stack-1.gif[Sb4S7] anionic chain which is directed along [100]. Weaker Sb‐S bonding interactions between neighbored chains lead to the formation of layers within the (001) plane which contain pockets that are occupied by the cations. The TM2+ ions are in a trigonal bipyramidal environment of four N atoms of the tren ligand and one S atom of the thioantimonate(III) anion. The optical band gaps depend on the TM2+ ion and amount to 3.11 eV for 1 , 2.04 eV for 2 , 2.45 eV for 3 , and 2.60 eV for 4 .  相似文献   

5.
6.
A series of novel organically templated germanium antimony sulfides have been solvothermally synthesized and structurally, thermally, and optically characterized. The compound [Me2NH2]6[(Ge2Sb2S7)(Ge4S10)] ( 1 ) features two distinct tetranuclear [Ge2Sb2S7]2? and [Ge4S10]4? isolated clusters. The compound [(Me)2NH2][DabcoH]2[Ge2Sb3S10] ( 2 ) (Dabco=triethylenediamine) features a 1D‐[Ge2Sb3S10]n3n? ribbon constructed with two [GeSbS5]n3n? chains bridged by Sb3+ ion in ψ‐SbS4 configuration. Compounds [M(en)3][GeSb2S6] (M=Ni ( 3 ), Co ( 4 ) en=ethylenediamine) feature the unique 2D grid layer structures of [GeSb2S6]n2n?. The compound [(Me)2NH2]2[GeSb2S6] ( 5 ) previously reported by us features a 3D chiral microporous structure with the chiral channels. The optical absorption spectra indicate that all the compounds are wide bandgap semiconductors. Thermal stabilities of these compounds have been investigated by thermogravimetric analyses (TGA).  相似文献   

7.
A solution of sodium in liquid ammonia reacts with Sb2S3 to form large colorless crystals of the composition Na3SbS3⋅10 NH3. The trigonal‐pyramidal SbS33− anion is ion‐paired with three Na+ counter ions, the coordination spheres of which are completed by eight ammine ligands. The resulting neutral [Na(NH3)3]2[Na(NH3)2]SbS3 molecules crystallize together with two ammonia molecules of solvation in the space group P21/c (a=9.828(2), b=6.0702(4), c=33.4377(6) Å, β=91.362(7)°, V=1994.2(5) Å3, Z=4).  相似文献   

8.
The novel thioantimonate(III) [Ni(dien)2]9Sb22S42 · 0.5H2O was synthesised under solvothermal conditions by reacting elemental Ni, Sb and S in an aqueous solution of diethylenetriamine (dien) (80%). The compound crystallises in the triclinic space group P1¯, a = 8.997(2) Å, b = 15.293(3) Å, c = 34.434(7) Å, α = 85.51(3)°, β = 84.16(3)°, γ = 83.54(3)°, V = 4672.7 (16) Å3, Z = 1. The layered [Sb22S4218—] anion in [Ni(dien)2]9Sb22S42 · 0.5H2O is composed of nine SbS3 trigonal pyramids, one SbS4 and one SbS5 unit. The interconnection of these units by sharing common S atoms yields Sb‐S heterorings of different sizes. Besides the smaller Sb2S2 and Sb3S3 rings a very large Sb30S30 heteroring is observed. The structure directing effect of the [Ni(dien)2]2+ cations is obvious as they are located above and below the pores of the anion. The nine [Ni(dien)2]2+ cations exhibit different conformations. All Ni2+ cations are in an octahedral environment of six N atoms of two dien ligands. The anions and cations are stacked perpendicular to [100] in an alternating fashion.  相似文献   

9.
Summary. Yellow crystals of the title compound were obtained under solvothermal conditions reacting elemental Zn, Sb, and S in a solution of tris(2-aminoethyl)amine (=tren) and water. The compound crystallises in the monoclinic space group P21/c with a=13.0247(7), b=22.308(2), c=12.1776(6) Å, and =105.352(6)°. In the structure of [Zn(tren)]2Sb4S8·0.75 H2O two [Zn(tren)]2+ cations are bound to the [Sb4S8]4– anion via S atoms. The Zn2+ ions are in a trigonal bipyramidal environment of four N atoms of the tetradentate tren ligand and one S atom of the [Sb4S8]4– anion. The anion is formed by SbS3 and SbS4 units which share common corners and edges. The interconnection mode yields three different non-planar Sb2S2 heterorings. The shortest intermolecular Sb–S distance amounts to about 3.7Å, and taking this long separation into account undulated chains running along [001] are formed with the water molecules residing in the pocket-like cavities. Upon heating the compound decomposes in one step starting at about 240°C. The final decomposition product was identified as ZnS and Sb2S3 by X-ray powder diffractometry. Additionally, spectroscopic data as well as synthetic procedures for [Zn(tren)]2Sb4S8·0.75 H2O are reported.  相似文献   

10.
Applying Schlippe's salt, Na3SbS4 · 9H2O, in the presence of the in-situ formed [Mn(terpy)]2+ complex (terpy = 2,2':6',2''-terpyridine) the new compound {[(Mn(terpy))2Sb4S8] · 0.5H2O}n ( I ) could be obtained under solvothermal conditions. Interestingly, in the crystal structure the two unique Mn2+ cations adopt different environments to form a MnN3S3 octahedron and a MnN3S2 trigonal pyramid. The trigonal pyramidal SbS33– anions share common edges yielding a Sb8S8 ring. Covalent bonds between Mn2+ and S2– generate MnSb2S3 and Mn2Sb4S6 heterocycles. The Sb8S8 and Mn2Sb4S6 rings are condensed to form a chain. The MnN3S3 octahedron and the MnN3S2 polyhedron share a common S2– anion and antiferromagnetic properties are observed mediated by superexchange interactions. {[(Mn(terpy))2Sb4S8] · 0.5H2O}n shows luminescence in the blue-green spectral range, assigned to combined contributions from Mn2+ ions and from the organic ligand.  相似文献   

11.
Yellow crystals of the title compound were obtained under solvothermal conditions reacting elemental Zn, Sb, and S in a solution of tris(2-aminoethyl)amine (=tren) and water. The compound crystallises in the monoclinic space group P21/c with a=13.0247(7), b=22.308(2), c=12.1776(6) Å, and =105.352(6)°. In the structure of [Zn(tren)]2Sb4S8·0.75 H2O two [Zn(tren)]2+ cations are bound to the [Sb4S8]4– anion via S atoms. The Zn2+ ions are in a trigonal bipyramidal environment of four N atoms of the tetradentate tren ligand and one S atom of the [Sb4S8]4– anion. The anion is formed by SbS3 and SbS4 units which share common corners and edges. The interconnection mode yields three different non-planar Sb2S2 heterorings. The shortest intermolecular Sb–S distance amounts to about 3.7Å, and taking this long separation into account undulated chains running along [001] are formed with the water molecules residing in the pocket-like cavities. Upon heating the compound decomposes in one step starting at about 240°C. The final decomposition product was identified as ZnS and Sb2S3 by X-ray powder diffractometry. Additionally, spectroscopic data as well as synthetic procedures for [Zn(tren)]2Sb4S8·0.75 H2O are reported.  相似文献   

12.
The novel silver(I)thioantimonates(III) [C4N2H14][Ag3Sb3S7] (I) (C4N2H12=1,4-diaminobutane) and [C2N2H9]2[Ag5Sb3S8] (II) (C2N2H8=ethylenediamine) were synthesized under solvothermal conditions using AgNO3, Sb, S and the amines as structure directing molecules. Both compounds crystallize as orange needles with lattice parameters a=6.669(1) Å, b=30.440(3) Å, c=9.154(1) Å for I (space group Pnma), and a=6.2712(4) Å, b=15.901(1) Å, c=23.012(2) Å, β=95.37(1)° for II (space group P21/n). In both compounds the primary building units are trigonal SbS3 pyramids, AgS3 triangles and AgS4 tetrahedra. In I the layered [Ag3Sb3S7]2− anion is constructed by two different chains. An [Sb2S4] chain running along [100] is formed by vertex sharing of SbS3 pyramids. The second chain contains a Ag3SbS5 group composed of the AgS4 tetrahedron, two AgS3 units and one SbS3 pyramid. The Ag3SbS5 units are joined via S atoms to form the second chain which is also directed along [100]. The layered anion is then obtained by condensation of the two individual chains. The organic structure director is sandwiched by the inorganic layers and the shortest inter-layer distance is about 6.4 Å. In II the primary building units are linked into different six-membered rings which form a honeycomb-like layer. Two such layers are connected via Ag-S bonds of the AgS4 tetrahedra giving the final undulated double layer anion. The structure directing ethylenediamine cations are located in pairs between the layers and a sandwich-like arrangement of alternating anionic layers and organic cations is observed. The inter-layer separation is about 5.4 Å. Both compounds decompose in a more or less complex manner when heated in an argon atmosphere. The optical band gaps of about 1.9 eV for the two compounds proof the semiconducting behavior. For II the conductivity was measured with impedance spectroscopy and amounts to σ295K=7.6×10−7 Ω−1 cm−1. At 80 °C the conductivity is significantly larger by one order of magnitude.  相似文献   

13.
K3SbS3 · 3 Sb2O3, an Oxothioantimonite with a Tube Structure Orange colored K3SbS3 · 3 Sb2O3 was prepared in an alkaline aqueous solution of K2S and Sb2S3. It crystallizes in thin hexagonal prisms. For crystallographic data see ?Inhaltsübersicht”?. There are Sb2O3-tubes in this structure. Inside these tubes are the K+-ions. Their charge is neutralized by SbS-pyramides, which occupy positions between the Sb2O3 tubes.  相似文献   

14.
A new nonlinear optical (NLO) oxysulfide, Sr6Cd2Sb6O7S10, which contains the functional groups [SbOxS5?x]7? (x=0, 1) with a 5s2 electron configuration, is synthesized by a solid‐state reaction. This compound displays a phase‐matchable second harmonic generation (SHG) response four times stronger than AgGaS2 (AGS) under laser irradiation at 2.09 μm. Single‐crystal‐based optical measurements reveal a SHG intensity that can be tuned by temperature and novel photoluminescence properties. Theoretical analyses demonstrate that tetragonal [SbOS4]7? and [SbS5]7? pyramids make the predominant contribution to the enhanced SHG effect. Among those, the [SbOS4]7? units with mixed anions make a larger contribution. This work proposes that oxysulfide groups with an ns2 electron configuration can serve as new functional building units in NLO materials and opens a new avenue for the design of other optoelectronic materials.  相似文献   

15.
Compounds in the Systems Potassium(Rubidium)/Gold/Antimony: K3Au3Sb2, Rb3Au3Sb2, and K1,74Rb0,26RbAu3Sb2 Brittle, silver coloured single crystals of K3Au3Sb2, Rb3Au3Sb2 and K1,74Rb0,26RbAu3Sb2 were obtainded by reaction of the alkali metal azides (KN3, RbN3) with gold and antimon powder at 550°C. The structures of the isotypic compounds (R3 m, Z = 3) were determined by X-ray single-crystal diffractometer data: K3Au3Sb2, a = 6,198(2) Å, c = 21,520(5) Å, R/Rw (w = 1) = 0,046/0,058, Z(F) ? 3σ(F) = 175, Z(Var.) = 14; Rb3Au3Sb2, a = 6,443(3), c = 21,69(2), R/Rw (w = 1) = 0,059/0,082, Z(F) ? 3σ(F02) = 258, Z(Var.) = 14; K1,74Rb0,26RbAu3Sb2, a = 6,288(2) Å, c = 21,617(5) Å, R/Rw (w = 1) = 0,049/0,069, Z(F) ? 3σ(F) = 390, Z(Var) = 14. The compounds crystallize with the K3Cu3P2-structure type. The Au? Sb partial structures consist of [AuSb2/3] layers with linear Sb? Au? Sb dumb-bells and SbAu3 pyramids. The layers are separated by two crystallographically independent alkali metal atoms along [001].  相似文献   

16.
The novel copper(I)‐thioantimonates(III) (enH22+)0.5Cu2SbS3 ( I ) (en = ethylendiamine), (1, 3‐DAPH22+)0.5Cu2SbS3 ( II ) (1, 3‐DAP = 1, 3 diaminopropane) and (1, 4‐DABH22+)0.5Cu2SbS3 ( III ) (1, 4‐DAB = 1, 4‐diaminobutane) were synthesized under solvothermal conditions reacting Sb2S3, CuCl2·2H2O, S with the amines. The compounds crystallize in the monoclinic space group P21/n. The primary building units are a SbS3 trigonal pyramid and two distorted CuS3 units. In the structures the SbS3 pyramid is connected to six CuS3 moieties and every S atom has bonds to one Sb atom and to two Cu atoms. Further interconnection leads to the formation of ten‐membered (10 MR) Cu3Sb2S5 and six‐membered (6 MR) Cu2SbS3 rings. Every 10 MR is condensed to four 10 MR and four 6 MR to form a single layer within the (010) plane. Two such single layers are connected to a double layer thus forming the final [Cu2SbS3] layered anion. The [CuSbS3] protonated amines are located between the layers and the interlayer spacing depends on the size and orientation of these amines. Between the Sb atom and one Cu atom a remarkable short distance of about 2.7Å is observed. At elevated temperatures the compounds decompose into CuSbS2 and Cu3SbS4 suggesting a complex redox reaction. Diamagnetic susceptibilities indicate the copper(I) in the metal sulfide frameworks. All three compounds are semiconductors with intermediate band gaps of about 2 eV.  相似文献   

17.
Raman spectroscopy was used to investigate the lead–antimony sulfosalts minerals: boulangerite (Pb5Sb4S11), jamesonite (FePb4Sb6S14), robinsonite (Pb4Sb6Sl3) and zinkenite (Pb9Sb22S42). Raman bands of the investigated minerals that have interconnected SbS3 pyramids are found between 375 and 50 cm1. The stretching and bending modes of SbS3 groups occur between 375 and 175 cm1 in boulangerite, 350 and 180 cm1 in jamesonite, 350 and 175 cm−1 in robinsonite and zinkenite. The investigated minerals show approximate similarities in their spectral features with those of minerals containing pyramidal SbS3 groups.  相似文献   

18.
The structure of the new quaternary thio­phosphate rubidium diniobium tris­(di­sulfide) tetra­thio­phosphate, RbNb2(S2)3(PS4), is made up of one‐dimensional [Nb2(S2)3(PS4)?] chains along the [101] direction, and these chains are separated from one another by Rb+ ions. The chain is basically built up from [Nb2S12] units and tetrahedral [PS4] groups. The [Nb2S12] units are linked together to form a linear [Nb2S9] chain by sharing the S–S prism edge. Short and long Nb—Nb distances [2.888 (2) and 3.760 (2) Å, respectively] alternate along the chain, and the anionic species S22? and S2? are observed.  相似文献   

19.
Thioantimonate compounds of [Mn(en)3]2Sb2S5 (1) and [Ni(en)3(Hen)]SbS4 (2) (en=ethylenediamine) were prepared by reaction of transition metal chloride with Sb and S8 powders under solvothermal conditions. Compound 1 consists of discrete [Sb2S5]4− anion, which is formed by corner-sharing SbS3 trigonal pyramids. Compound 2 is composed of discrete tetrahedral [SbS4]3− anion. The compounds 1 and 2 are charge compensated by [M(en)3]2+ cations, whereas in the crystal of 2 there is another counter ion of [Hen]+. The results of the synthesis suggest that the temperature, the concentration and the existing states of the starting materials and so on are important for the structure and composition of the final products. In addition, the oxidation-state of antimony might be related to the molar ratio of the reactants. Excess amount of elemental S is beneficial to the higher oxidation-state of thioantimonate (V). Compound 1 decomposes from 150°C to 350°C, while compound 2 decomposes from 200°C to 350°C remaining Sb2S3 and NiSbS as residues.  相似文献   

20.
By following a new synthetic approach, which is based on the in situ formation of a basic medium by the reaction between the strong base Sb(V)S43? and the weak acid H2O, it was possible to prepare three layered thioantimonate(III) compounds of composition [TM(2,2′‐bipyridine)3][Sb6S10] (TM=Ni, Fe) and [Ni(4,4′‐dimethyl‐2,2′‐bipyridine)3][Sb6S10] under hydrothermal conditions featuring two different thioantimonate(III) network topologies. The antimony source, Na3SbS4 ? 9 H2O, undergoes several decomposition reactions and produces the SbIIIS3 species, which condenses to generate the layered anion. The application of transition‐metal complexes avoids crystallization of dense phases. The reactions are very fast compared to conventional hydrothermal/solvothermal syntheses and are much less sensitive to changes of the reaction parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号