首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
New sets of data for the solubility of CO2 in the amine solvent system of 2-amino-2-methyl-1-propanol (1) + sulfolane (2) + water (3) were presented in this work. The measurements were done at temperatures of 313.2, 333.2, 353.2, and 373.2 K and CO2 partial pressures up to 193 kPa. The investigated compositions were as follows: (i) w1=16.5%w1=16.5%, w2=32.2%w2=32.2%; (ii) w1=8.2%w1=8.2%, w2=41.2%w2=41.2%; (iii) w1=22.3%w1=22.3%, w2=27.7%w2=27.7%; and (iv) w1=30.6%w1=30.6%, w2=19.4%w2=19.4%, where ww is the mass percent of the component. The present solubility data was correlated by a modified Kent–Eisenberg model. The model reasonably represents the present solubility data, not only over the considered conditions, but also for a wider range of temperatures, partial pressures, and compositions.  相似文献   

2.
3.
Density measurements are reported performed on three 1-alkyl-3-methylimidazolium-based ([Cn-mim], n=2,4,6n=2,4,6) ionic liquids with tetrafluoroborate anion at atmospheric pressure at 15 temperatures from 281 to 353 K. The buoyancy method was employed, using the microbalance of the Krüss K100MK2 tensiometer. At each temperature from 33 to 55 individual buoyancy readings were taken in most cases. The density average values at particular temperatures are presented with estimated total standard uncertainty less than ±0.4±0.4 kg m−3 (3.3 ×10−4?×104?). An empirical density–temperature equations have been developed describing the temperature dependence of each ionic liquid density. The 58 new experimental data points on the density–temperature relation of the three ionic liquids of interest are means calculated from about 3000 individual density readings, which have been altogether taken in the present study.  相似文献   

4.
The all silica DDR membrane turns out to be well suited to separate water from organic solvents under pervaporation conditions, despite its hydrophobic character. All-silica zeolites are chemically and hydrothermally more stable than aluminum containing ones and are therefore preferred for membrane applications, including for dehydration, even though these type of membranes are hydrophobic. Permeation of water, ethanol and methanol through an all-silica DDR membrane has been measured at temperatures ranging from 344 to 398 K. The hydrophobic membrane shows high water fluxes (up to 20 kg m−2 h−1). The pure water permeance is insensitive to temperature and is well described assuming weak adsorption. Excellent performance in dewatering ethanol (N=2N=2 kg m−2 h−1and αw=1500αw=1500 at 373 K and xw=0.18xw=0.18) is observed and the membrane is also able to selectively remove water from methanol (N=5N=5 kg m−2 h−1 and αw=9αw=9). Water could also be removed from methanol/ethanol/water (αwater/EtOH=1500αwater/EtOH=1500, αMeOH/EtOH=70αMeOH/EtOH=70 at 373 K) mixtures, even at water feed concentrations below 1.5 mol%.  相似文献   

5.
6.
Transitiometric investigations of the pure compounds tetracosane and anhydrous caffeine as well as of the mixtures (methane+tetracosanemethane+tetracosane) and (carbon dioxide+caffeinecarbon dioxide+caffeine) are reported for pressures up to 180 MPa. The results are compared with calculations from equations of state; the selection of reference data and the fitting of parameters is explicitly discussed. It is demonstrated how the calculations can aid the interpretation of transitiometric signals, and how the combination of transitiometry and thermodynamic modelling can be used to construct and understand high-pressure phase diagrams of asymmetric mixtures.  相似文献   

7.
8.
In a recent generalisation of the SAFT-VR equation of state the method was extended so as to deal with short as well as long square-well ranges, namely, 1.2≤λ≤3.01.2λ3.0 [B.H. Patel, H. Docherty, S. Varga, A. Galindo, G.C. Maitland., Mol. Phys. 103 (1) (2005) 129–139]. Here, we confirm the accuracy of the approach by comparison with numerical calculations of the first perturbation term and with vapour pressure and coexistence density computer simulation data. The approach is then used to model a number of real substances, from non-polar to strongly polar. We discuss in particular the values of the square-well potential model found. For this purpose we construct a relative least squares objective function and the percentage absolute average deviation (%AAD) to determine the intermolecular model parameters (m  , λλ, σσ, ?/kB?/kB, ?hb/kB?hb/kB and rcrc) by comparison to experimental vapour-pressure and saturated liquid density data. In order to ensure in each case that the global minimum is identified, the dimensionality of the problem is reduced by discretising the parameter-space [G.N.I. Clark, A.J. Haslam, A. Galindo, G. Jackson., Mol. Phys. 104 (22–24) (2006) 3561–3581]. Applying this method to the study of argon, n  -alkanes, nitrogen, benzene, carbon dioxide, carbon monoxide, the refrigerant R1270, hydrogen chloride hydrogen bromide and water we find that the optimal models always present square-well ranges λ<1.8λ<1.8, meaning that an upper bound value of λ=1.8λ=1.8 set in the original approach is sufficient to model real fluids; even polar ones. This finding is explained in terms of the averaged dipole–dipole interaction and of the long-range mean-field limit of the square-well potential.  相似文献   

9.
The influence of Cu(II) impurity on chemical equilibria in unsaturated and saturated ammonium oxalate (AO) aqueous solutions was investigated as a function of concentration cici of impurity. Using the computer programme “Hyss” the species present in the solutions were analysed. It was found that in the aqueous solutions of ammonium oxalate containing Cu(II) ions the following species are formed: Cu2+, Cu(OH)+, Cu(OH)2, CuC2O40 and Cu(C2O4)22− in addition to C2O42−, HC2O4, H2C2O4 and (NH4)2C2O40 species, and their concentration depends on concentrations cici of Cu(II) impurity and c of ammonium oxalate. The dependences of solution pH and of absorbance A   and the corresponding wavelength λλ for unsaturated aqueous solutions on ammonium oxalate concentration c   containing different concentrations cici of Cu(II) ions showed three well-defined regions characterised by transition values of solution pH or solute concentration c. Speciation analysis revealed that Cu2+ and CuC2O40, CuC2O40 and Cu(C2O4)22−, and Cu(C2O4)22− complexes are predominantly present in the solute concentration intervals c≤0.01c0.01 mol/dm3, 0.01 mol/dm3 <c<0.03<c<0.03 mol/dm3 and c≥0.03c0.03 mol/dm3, respectively. The concentration interval range 0.01 mol/dm3 <c<0.03<c<0.03 mol/dm3 corresponds to the pH interval where Cu(OH)2 is precipitated. It was found that the solubility of ammonium oxalate at 30 °°C increases practically linearly with an increase in the concentration of Cu(II) impurity. Speciation analysis of saturated aqueous solutions of ammonium oxalate revealed that Cu(II) ions contained in AO saturated solutions exist mainly as Cu(C2O4)22−-type complexes, and the increase in the solubility of AO in the presence of Cu(II) impurity is essentially due to an increase in the ratio of the concentrations of CuC2O40 and Cu(C2O4)22− species.  相似文献   

10.
The reduced heights equivalent to a theoretical plate (HETP) of naphtho[2,3-a]pyrene were measured at room temperature on two sets of new prototype columns designed to be used in very high pressure liquid chromatography (VHPLC). The mobile phase used was pure acetonitrile. The columns are 50, 100, and 150 mm long. Those of the first set are 2.1 mm I.D., those of the second set, 3.0 mm I.D. The performance of these new columns were compared to those of the first generation of VHPLC columns, commercially available in 2.1 mm I.D. The prototype and commercial columns behave similarly at low reduced linear velocities (ν<5ν<5), when the heat effects are negligible. At high flow rates, the shorter prototype columns have a twice better efficiency and less steep C-branches than the commercial columns. In contrast, the C-branch of the 150 mm long prototype columns are slightly steeper than those of the commercial columns. The important contribution to the reduced HETP that is due to the heat effects at high flow rates can in part be accounted for by a band broadening model governed by a flow mechanism with the shortest prototype columns. The sole heat effects cannot, however, explain the mediocre reduced HETPs of the 2.1 and 3.0 I.D. 150 mm long prototype columns. It seems that radial heterogeneity of the flow rate of the long prototype columns is significantly larger than that of the short columns. The contribution of the packing heterogeneity adds up to that of the heat effects to yield a poor column efficiency when sub-2μmsub-2μm are packed into thin, long column tubes.  相似文献   

11.
The value of the fundamental derivative of gas dynamics, ΓΓ, is a quantitative measure of the variation of the speed of sound with respect to density in isentropic transformations, such as those occurring, for example, in gas-dynamic nozzles. The accurate computation of its value, which is a constant for a perfect gas, is key to the understanding of real-gas flows occurring in a thermodynamic region where the polytropic ideal gas law does not hold. The fundamental derivative of gas dynamics is a secondary thermodynamic property and so far, no experiments have been conducted with the aim of measuring its value. Several studies document the estimation of ΓΓ for fluids composed of complex molecules using mainly simple thermodynamic equations of state, e.g., that of Van der Waals. A review of these studies has revealed that the calculated values of ΓΓ are affected by large uncertainties; these uncertainties are due to the functional form of the adopted equations and because of uncertainties in the available fluid property data on which these equations were fitted. In this work, the fundamental derivative of gas dynamics of molecularly simple fluids is computed with the aid of, among other models, modern reference equations of state. The accuracy of these computations has been assessed. Reference thermodynamic models however, are not available for molecularly complex fluids; some of these molecularly complex fluids are the substances of interest in studies on the so-called nonclassical gas dynamics. Therefore, results of the computation of ΓΓ for few, molecularly simple hydrocarbons, like methane, ethane, etc., are used as a benchmark against which the performance of simpler equations of state, can be assessed. For the selected substances, the Peng–Robinson, Stryjek–Vera modified, cubic equation of state yields good results for ΓΓ-predictions, while the modern multiparameter technical equations of state, e.g., the one in the Span–Wagner functional form, are preferable, provided that enough accurate thermodynamic data are available. Another notable result of this study, is that ΓΓ for a fluid composed of complex molecules is less affected by the inaccuracy of CvCv-information (CvCv is the isochoric heat capacity), if compared to the estimation of ΓΓ for simple molecules. Inspection of the results of the calculation of ΓΓ in the proximity of the critical point confirms that analytical equations of state fail to predict the correct physical behavior, even if they include terms which allow for the correct estimation of thermodynamic properties.  相似文献   

12.
Because of the large temperatures and pressures involved, the experimental determination of the vapor–liquid equilibria and of the critical properties of metals is fraught with difficulties. We show in this work how we determine these properties for a metal using hybrid Monte Carlo Wang–Landau simulations in the isothermal–isobaric ensemble on the example of copper. We use a many-body potential, known as the quantum corrected Sutton–Chen embedded atom model, to model the interactions between Cu atoms. We obtain the following estimates for the critical temperature Tc=5696±50Tc=5696±50 K, the critical density ρc=1.80±0.03ρc=1.80±0.03 g/cm3, and the critical pressure Pc=1141±100Pc=1141±100 bar. Our results lie within the range of values found in experiments for the critical temperature (between 5140 K and 7696 K), for the critical pressure (between 420 bar and 5829 bar) and for the critical density (1.9 g cm−3).  相似文献   

13.
For the first time, results of high-precision measurements of the viscosity coefficient of triethylamine vapor at low densities are reported. The relative measurements with an all-quartz oscillating-disk viscometer were carried out along seven isochores at densities from 0.002 to 0.009 mol m−3 in the temperature range between 298 and 498 K. The uncertainty is estimated to be ±±0.2% at ambient temperature, increasing up to ±±0.3% at higher temperatures. First isothermal values were recalculated from the original experimental data and then evaluated with a first-order expansion for the viscosity, in terms of density. In addition, viscosity values of the saturated vapor were determined at low temperatures. The results are utilized to model the viscosity coefficient of triethylamine vapor at moderately low densities. A so-called individual correlation on the basis of the extended theorem of corresponding states was employed to describe the zero-density viscosity coefficient, whereas the Rainwater–Friend theory was used to represent the initial density dependence expressed as second viscosity virial coefficient.  相似文献   

14.
The spin chirality and spin structure of the Cu3 and V3 nanomagnets with the Dzialoshinsky–Moriya (DM) exchange interaction are analyzed. The correlations between the vector κκ and the scalar χχ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κκ. The correlations between the chirality parameters κnκn and the intensities of the EPR and INS transitions are obtained. The vector chirality κnκn describes the spin chirality of the Cu3 and V3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.  相似文献   

15.
16.
17.
18.
19.
In this paper densities for THF (tetrahydrofuran) and THF + water mixtures measured with the help of the Anton Paar DMA HPM vibrating tube densimeter are reported. The pure component densities of tetrahydrofuran measured in the temperature range from 278 to 437 K and pressures up to 130 MPa were correlated with the TRIDEN-System. Additionally densities of the binary mixture tetrahydrofuran + water were measured for 6 different concentrations in a temperature range from 288 to 338 K and up to 130 MPa. Excess volumes (vE)(vE) of the mixture were determined using the own correlation of the tetrahydrofuran densities and the equation of state (EoS) for water by Wagner and Pruß. Redlich–Kister polynomials were used to fit the vE-datavE-data. Additionally in this work it was checked if the vibrating tube densimeter allows the determination of the miscibility gap for the system THF–water as a function of temperature and pressure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号