首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A sensitive spectrophotometric method has been developed for the determination of uranium. The uranium(IV)-chlorophosphonazo-III complex is extracted into 3-methyl-1-butanol from 1.5–3.0 M hydrochloric acid solution. Maximal absorbance occurs at 673 nm and Beer's law is obeyed over the range of 0–15 μg per 10 ml of the organic phase. The molar absorptivity is 12.1·104 1 mole?1 cm?1. Uranium can be determined in the presence of fluoride. sulfate and phosphate. Nitrate ion and elements (chromium, copper, iron) which affect the reduction of uranium(VI) or stability of uranium(IV) interfere.  相似文献   

2.
An extraction-spectrophotometric method for the determination of trace amounts of fluconazole was described. Fluconazole was effectively extracted as a 1 : 1 ion-pair complex with bromocresole green (BCG) at pH 3.0 into chloroform, followed by spectrophotometric determination at 420 nm. Beer's law was obeyed over the range of 4-50 μg.mL^-1 of fluconazole with a detection limit of 3.7 μg.mL^-1 . The method is simple, rapid and sensitive. The procedure was applied to the determination of fluconazole in pharmaceutical preparations as well as its recovery from a blood serum sample.  相似文献   

3.
《Analytical letters》2012,45(5):871-889
Abstract

A new sensitive, selective, rapid, and reproducible method is presented for the analysis of trace amounts of molybdenum (VI) (Mo(VI)). The method is based on the reaction of molybdenum (VI) with a new analytical reagent, 6‐(5‐Chloro‐2‐hydroxy‐4‐sulfophenylazo)‐5‐hydroxy‐1‐naphthalenesulfonic acid, disodium salt. Under optimum reaction conditions, molybdenum (VI) forms a red complex with a maximum absorption peak at 589 nm. The color reaction is rapidly completed at room temperature. The apparent molar absorption coefficient and Sandell sensitivity were 1.13×104 L · mol?1 · cm?1 and 0.0084 µg · cm?2, respectively. Beer's law was obeyed up to 8.5 µg · mL?1. Methods for the determination of Mo(VI) by first‐derivative spectrophtometry have also been proposed at 547 and 625 nm. The proposed methods offer the advantages of sensitivity, rapidity, selectivity, and simplicity without any prior separation or extraction. The methods have been applied to the determination of Mo(VI) in various environmental samples and some alloys; satisfactory results have been obtained.  相似文献   

4.
《Analytical letters》2012,45(13):2207-2216
Abstract

A simple and selective spectrophotometric method has been developed for the determination of trace amounts of arsenic using azure B as a chromogenic reagent. The proposed method is based on the reaction of arsenic(III) with potassium iodate in acid medium to liberate iodine. The liberated iodine bleaches the violet color of azure B and is measured at 644 nm. This decrease in absorbance is directly proportional to the As(III) concentration, and Beer's law is obeyed in the range 0.2–10 µg ml?1 of As(III). The molar absorptivity, Sandell's sensitivity, detection limit, and quantitation limit of the method were found to be 1.12×104 l mol?1cm?1, 6.71×10?3 µg cm?2, 0.02 µg ml?1 and 0.08 µg ml?1, respectively. The optimum reaction conditions and other analytical parameters were evaluated. The proposed method has been successfully applied for the determination of arsenic in various environmental and biological samples.  相似文献   

5.
A simple, fast and reliable spectrophotometric method for the determination and microextraction of trace amounts of uranium using chromotrope 2R as a chelating agent and 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) was used as an extractant solvent. Influence variables such as pH, volume of ligand and IL were inspected by full factorial design. In the view of Pareto chart a contour plot was studied to examine the significant variables and their interactions. The detection limit and the preconcentration factor were found to be 0.87 and 50 μg L?1, respectively. The developed method was successfully applied to ore samples.  相似文献   

6.
Microwave plasma torch (MPT), traditionally used as the light source for atomic emission spectrophotometry, has been employed as the ambient ionization source for sensitive detection of uranium in various ground water samples with widely available ion trap mass spectrometer. In the full‐scan mass spectra obtained in the negative ion detection mode, uranium signal was featured by the uranyl nitrate complexes (e.g. [UO2(NO3)3]?), which yielded characteristic fragments in the tandem mass spectrometry experiments, allowing confident detection of trace uranium in water samples without sample pretreatment. Under the optimal experimental conditions, the calibration curves were linearly responded within the concentration levels ranged in 10–1000 µg·l?1, with the limit of detection (LOD) of 31.03 ng·l?1. The relative standard deviations (RSD) values were 2.1–5.8% for the given samples at 100 µg·l?1. The newly established method has been applied to direct detection of uranium in practical mine water samples, providing reasonable recoveries 90.94–112.36% for all the samples tested. The analysis of a single sample was completed within 30 s, showing a promising potential of the method for sensitive detection of trace uranium with improved throughput. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A stir foam composed of graphene oxide, poly(ethylene glycol) and natural latex (GO-PEG-NL) was prepared for use in micro-solid phase extraction sorbent of preservative agents and antioxidants from cosmetic products. The extracted analytes were quantified by GC-MS. Under the optimized conditions, the calibration plots are linear in the concentration ranges between 5.0 μg·L?1 to 1.0 mg·L?1 for benzoic acid, of 10.0 μg·L?1 to 1.0 mg·L?1 for 2-methyl-3-isothiazolinone (MI), and between 1.0 μg·L?1 and 1.0 mg·L?1 for both 3-tert-butyl-4-hydroxyanisole (BHA) and 2,6-di-tert-butyl-p-hydroxytoluene (BHT). The LODs are 1.0 μg·L?1 for benzoic acid, 5.0 μg·L?1 for MI and 0.5 μg·L?1 for both BHA and BHT. The stir-foam can be easily prepared, is inexpensive and well reproducible (RSDs <3%, for n?=?6). It can be re-used for up to 12 times after which extraction efficiency has dropped to 90%. The method was successfully applied to the determination of preservatives and antioxidants in cosmetic samples. Recoveries from spiked samples ranged between 94.5?±?2.1% and 99.8?±?1.8%.
Graphical abstract A stir foam was prepared from graphene oxide, poly(ethylene glycol) and natural latex (GO-PEG-NL) and is shown to be a most viable sorbent for the microextraction of trace amounts of preservative agents and antioxidants from cosmetic products.
  相似文献   

8.
A spectrophotometric method for the determination of palladium, iron and tellurium from nitric acid media after extraction of their p-[4-(3,5-dimethylisoxazolyl)azophenylazo]calix(4)arene [DMIAPAC] complexes has been developed and possible synergistic effects have been investigated. Chloroform, carbon tetrachloride, cyclohexane, 1,2-dichloroethane, toluene and xylene were used as the diluents. The maximum enhancement was obtained in the presence of 30% 1,2-dichloroethane. The trace amounts of metals were determined spectrophotometrically. Beer’s law obeyed in the concentration range of 5.0–95.0 μg, 8.0–120.0 μg and 10.0–140.0 μg/10 mL of the final solution of palladium, iron and tellurium, respectively. The molar absorptivities (l mol?1cm?1) and Sandell’s sensitivities (μg cm ?1) were calculated: Pd(II) = 1.73 × 104 and 0.0061; Fe(III) = 1.08 × 104 and 0.0052; Te(IV) = 1.67 × 104 and 0.0077. Ten replicate analyses containing 20 μg of Pd(II), 12.5 μg of Fe(III) and 32 μg of Te(IV) gave mean absorbance of 0.326, 0.242 and 0.418 with relative standard deviation of 0.36, 0.65 and 0.82% for Pd(II), Fe(III) and Te(IV), respectively. The interference of various ions was studied and optimum conditions were developed for the determination of these metals in certain alloys and synthetic mixtures.  相似文献   

9.
A sensitive and simple method has been established for simultaneous preconcentration of trace amounts of Pb (II) and Ni (II) ions in water samples prior to their determination by flame atomic absorption spectrometry. This method was based on the using of a micro-column filled with graphene oxide as an adsorbent. The influences of various analytical parameters such as solution pH, adsorbent amount, eluent type and volume, flow rates of sample and eluent, and matrix ions on the recoveries of the metal ions were investigated. Using the optimum conditions, the calibration graphs were linear in the range of 7–260 and 5–85 μg L?1 with detection limits (3Sb) of 2.1 and 1.4 μg L?1 for lead and nickel ions, respectively. The relative standard deviation for 10 replicate determinations of 50 μg L?1 of lead and nickel ions were 4.1% and 3.8%, respectively. The preconcentration factors were 102.5 and 95 for lead and nickel ions, respectively. The adsorption capacity of the adsorbent was also determined. The method was successfully applied to determine the trace amounts of Pb (II) and Ni (II) ions in real water samples. The validation of the method was also performed by the standard reference material.  相似文献   

10.
A method has been developed for chemical control of a short-lived radiopharmaceutical,52Fe. The optimum conditions have been investigated for the simultaneous determination of microgram amounts of nickel, iron and chromium in an admixture. The method developed is applicable for the determination of 0.01 to 20 μg·ml?1 of nickel, 0.01 to 50 μg·ml?1 of iron and 0.05 to 50 μg·ml?1 of chromium. A study has been made of the mutual interference of these elements at different concentrations, and also of the interference by various other cations and anions. A list has been given of the other elements that can be analysed using the supporting electrolyte. A method of routine analysis is described.  相似文献   

11.
A novel flow injection procedure has been developed for the determination of gallic acid based on the enhancement function for luminol‐AgNO3‐Ag NPs chemiluminescence (CL) system by gallic acid. The enhancement mechanism was proposed for the reinforcing effect of the gallic acid on the CL system. The UV‐vis absorption spectrum and CL emission spectrum were applied to confirm the mechanism. The method is simple, rapid and sensitive with a detection limit of 5×10?10 g·mL?1 and a linear range of 8.0×10?10–1.0×10?7 g·mL?1. The relative standard deviation (RSD) is 1.3% for eleven measurements of 5×10?8 g·mL?1 gallic acid. The method has been successfully applied to the determination of gallic acid in Chinese proprietary medicine–Jianmin Yanhou tablets and synthesized samples.  相似文献   

12.
《Analytical letters》2012,45(16):2996-3005
Abstract

A effective and simple determination of poisonous trace element thallium(I) by means of kinetic catalytic reaction is proposed. The method is based on a catalytic effect of thallium(I) on a luminol-hydrogen peroxide system. Three different kinds of surfactants, cetrimonium bromide (CTMAB), sodium dodecyl sulphate (SDS), and Tween-80, are also investigated to improve the detection sensitivity. In optimum conditions, a highly selective and sensitive method for detecting trace thallium(I) has been established. The detection limit is 0.0073 µg · mL?1, the relative standard deviation for six determinations of 0.04 µg · mL?1 thallium(I) is less than 4.0%, and the linear range of determination is 0.02–0.1 µg · mL?1.  相似文献   

13.
《Analytical letters》2012,45(14):2184-2192
A new procedure for trace tungsten W(VI) in soil by fluorescence quenching method coupled with cloud point extraction (CPE) as the separation-preconcentration method was described. The Triton X-100 CPE behavior of W(VI)-salicylfluorone (SAF)was investigated. Under the optimized conditions, the fluorescence quenched intensity (ΔF) was linearly with W(VI). The range of linear was 0.8 ~ 20.0 μg · L?1, the detection limit (DL) was 0.14 ng · mL?1 (3σ), the relative standard deviation 3.3% (c = 10.0 μg · L?1, n = 5) and the recovery was 101.0–102.2%. The proposed method applied to the analysis of W(VI) in certified reference materials and real samples.  相似文献   

14.
《Analytical letters》2012,45(7-8):1172-1189
The purpose of this study consists in reporting of single laboratory validation of a method for the determination of total inorganic arsenic by hydride generation atomic absorption spectrometry from natural and residual water samples. Applicability, fitness for purpose, selectivity, and sensitivity were discussed. A calibration study was realized, linear working range (0.4–4 μg·L?1), detection (0.11 μg·L?1), and quantification (0.38 μg·L?1) limits being determined. It was also proven that the method is accurate and precise. Following the bottom-up approach measurement, uncertainty was estimated (method validation data were used).  相似文献   

15.
Picolinealdehyde salicyloylhydrazone reacts with vanadium(V) to produce a yellow 1:1 complex (λmax = 400 nm, ? = 2.17 × 104 liters · mol?1 cm?1) in aqueous ethanolic solution. The yellow complex can be extracted into chlorobenzene (λmax = 425 nm, ? = 2.16 × 104 liters · mol?1 cm?1) and used for the spectrophotometric determination of trace amounts of vanadium. Interferences have been investigated. The method has been applied to the determination of vanadium in steel and in lead concentrates.  相似文献   

16.
A sensitive analytical procedure based on solid phase extractive-spectrophotometry has been established for the determination of the widely used herbicide atrazine .The method is based on the Konig reaction in which atrazine reacts with pyridine reagent to form a quaternary pyridinium halide, which further forms glutaconic aldehyde in the presence of alkali. Glutaconic aldehyde is subsequently coupled with 4-aminoacetanilide in the micellar medium of anionic surfactant sodium dodecyl sulphate to give a yellow-orange dye. The produced dye was enriched on a C18 cartridge and is measured spectrophotometrically at 460 nm. The sensitivity and selectivity of the method was largely enhanced in the micellar media and SPE on the C18 cartridge and avoids the use of toxic solvents. Beer’s law was obeyed in the range 0.012–0.12 μg mL?1. Molar absorptivity and Sandell’s sensitivity were found to be 1.52 × 10L mol? 1 cm?1 and 0.0002 μg cm?2, respectively. The limit of detection and quantification were 0.001 and 0.003 μg mL?1, respectively. The proposed method was applied successfully for the determination of atrazine in environmental and biological samples with a recovery range of 96–101 %. The method was found to be free from interference of a large number of foreign species. The accuracy and reliability of the method was further established by parallel determination by the reference method, and by recovery studies.  相似文献   

17.
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with α-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48 μg L−1, respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.  相似文献   

18.
《Electroanalysis》2005,17(8):719-723
A very sensitive and selective adsorptive cathodic stripping procedure for trace measurement of uranium is presented. The method is based on adsorptive accumulation of the uranium‐pyromellitic acid (benzene‐1,2,4,5‐tetracarboxylic acid) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species by voltammetric scan using differential pulse modulation. Influences of effective parameters such as pH, concentration of pyromellitic acid, accumulation potential and accumulation time on the sensitivity were studied. The peak current was proportional to the concentration of U(IV) up to 40 ng mL?1 with a limit of detection of 0.136 ng mL?1 with an accumulation time of 120 s. The range of linearity enhanced to 71.4 ng mL?1and the detection limit improved to 0.058 ng mL?1with accumulation times of 60 s and 300 s respectively. The relative standard deviation for 10 replicate determination of 4.76 ng mL?1 U(IV) was equal to 2.7%. The possible interference by major cations and anions are investigated. The method was applied to the determination of uranium in some analytical grade salts, seawater and in synthetic samples corresponding to some uranium alloys with satisfactory results.  相似文献   

19.
A selective extraction–spectrophotometric method has been developed for determination of selenium(IV) using O-methoxyphenyl thiourea (OMePT) as a chelating agent. The basis of the proposed method is the spectrophotometric determination of selenium(IV)–OMePT complex obtained after extraction of selenium(IV) from 3.5 M hydrochloric acid media using OMePT in chloroform solvent. The complex shows maximum absorbance at 350 nm against the reagent blank. The Beer’s law was obeyed over the concentration range 5–60 µg mL?1 of selenium(IV). The optimum concentration range was 20–50 µg mL?1 as evaluated from Ringbom’s plot. The molar absorptivity and Sandell’s sensitivity of the selenium(IV)–OMePT complex in chloroform were 3.312 × 102 L mol?1cm?1 and 0.2384 µg cm?2, respectively. The composition of selenium(IV)–OMePT complex was 1:2 established from slope ratio method, mole ratio method and Job’s continuous variation method. The complex was stable for more than 72 h. The interfering effect of various foreign ions was studied and suitable masking agents were used wherever necessary to enhance the selectivity of the developed method. The proposed method was successfully applied for the determination of selenium(IV) from real samples, viz. pharmaceutical formulations, shampoo, vegetable sample, synthetic mixtures and environmental samples. Repetition of the method was checked by finding the relative standard deviation (RSD) for 10 determinations which was 0.35%.  相似文献   

20.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号