首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.  相似文献   

2.
Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10–20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics.  相似文献   

3.
Isothermal exponential amplification techniques, such as strand‐displacement amplification (SDA), rolling circle amplification (RCA), loop‐mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase‐dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on‐site, point‐of‐care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.  相似文献   

4.
林雪霞  王晨境  林金明 《色谱》2020,38(10):1179-1188
人乳头瘤病毒(human papillomavirus,HPV)是一种常见的球形DNA病毒,目前已报道其可以导致6种类型的癌症发生,因此HPV病毒检测方法的研究引起了人们的重视。芯片毛细管电泳(MCE),作为一种芯片实验设备,结合各种信号放大技术为HPV分型检测提供了简单、快速、高灵敏度和易便携化的检测方法。该文综述了MCE在常规HPV分型检测中的最新研究进展,主要分为MCE技术和MCE结合核酸扩增技术两个部分。综述的第一部分介绍了MCE系统、MCE芯片结构设计和电泳分离方法。典型的MCE系统包含了高压电源、分离芯片、电解液池、进样系统、检测系统等。该文还介绍了近年来应用最广泛的4种芯片通道,包括分离直通道、T型通道、蛇形通道以及双通道,并分别对它们的优缺点进行了比较。第二部分主要介绍芯片电泳在HPV检测中的应用和发展。由于MCE技术的应用,HPV目标物的分离时间,从以前的几个小时缩短到几分钟,极大地提高了分离速度。重点介绍了各种核酸扩增技术结合MCE检测HPV的方法。对聚合酶链式反应(PCR)和MCE结合用于HPV的检测技术、环介导等温扩增(LAMP)技术的HPV检测方法、基于PCR结合限制性片段长度多态性(RFLP)技术用于HPV分型的DNA检测、基于核酸序列扩增(NASBA)技术检测HPV mRNA、巢式PCR等进行了比较分析。其次,对HPV其他检测方法进行了总结,其中包括PCR结合傅里叶变换红外光谱法(FT-IR)、纳米技术、DNA探针结合电化学方法、亚铜粒子氧化还原锌掺杂的二硫化钼量子点结合T7外切酶电化学发光法和基于CRISPR/Cas12a的环介导等温扩增法。在这些非MCE方法中,电化学传感法,如阻抗法、脉冲伏安法和流动生物传感器,由于背景信号低、时间控制能力强,是一种比较理想的方法。最后,虽然近年来MCE技术得到了发展,所开发的设备得到了应用,但目前在MCE技术、方法和应用方面仍然存在一些挑战。MCE技术在HPV分型检测应用中面临的第一个挑战是,MCE本身无法对HPV核酸进行信号放大,从而不能在HPV的高灵敏和高选择性分析中得到很好的应用。第二个挑战是,虽然有一些研究者已经成功地将PCR和MCE集成在一个芯片上,但该技术的广泛应用仍面临困难,目前仍然没有真正集成的PCR-MCE芯片用于HPV检测。第三个挑战是目前MCE技术无法实现小型化、自动化器件的制造。最后,文章就MCE在HPV分型检测中开发更自动化、更快速以及更稳定可靠的检测技术提出了一些观点和见解,希望能对感兴趣的读者提供一些启发。  相似文献   

5.
A multi-analyte biosensor based on nucleic acid hybridization and liposome signal amplification was developed for the rapid serotype-specific detection of Dengue virus. After RNA amplification, detection of Dengue virus specific serotypes can be accomplished using a single analysis within 25 min. The multi-analyte biosensor is based on single-analyte assays (see Baeumner et al (2002) Anal Chem 74:1442–1448) developed earlier in which four analyses were required for specific serotype identification of Dengue virus samples. The multi-analyte biosensor employs generic and serotype-specific DNA probes, which hybridize with Dengue RNA that is amplified by the isothermal nucleic acid sequence based amplification (NASBA) reaction. The generic probe (reporter probe) is coupled to dye-entrapping liposomes and can hybridize to all four Dengue serotypes, while the serotype-specific probes (capture probes) are immobilized through biotin–streptavidin interaction on the surface of a polyethersulfone membrane strip in separate locations. A mixture of amplified Dengue virus RNA sequences and liposomes is applied to the membrane and allowed to migrate up along the test strip. After the liposome-target sequence complexes hybridize to the specific probes immobilized in the capture zones of the membrane strip, the Dengue serotype present in the sample can be determined. The amount of liposomes immobilized in the various capture zones directly correlates to the amount of viral RNA in the sample and can be quantified by a portable reflectometer. The specific arrangement of the capture zones and the use of unlabeled oligonucleotides (cold probes) enabled us to dramatically reduce the cross-reactivity of Dengue virus serotypes. Therefore, a single biosensor can be used to detect the exact Dengue serotype present in the sample. In addition, the biosensor can simultaneously detect two serotypes and so it is useful for the identification of possible concurrent infections found in clinical samples. The various biosensor components have been optimized with respect to specificity and sensitivity, and the system has been ultimately tested using blind coded samples. The biosensor demonstrated 92% reliability in Dengue serotype determination. Following isothermal amplification of the target sequences, the biosensor had a detection limit of 50 RNA molecules for serotype 2, 500 RNA molecules for serotypes 3 and 4, and 50,000 molecules for serotype 1. The multi-analyte biosensor is portable, inexpensive, and very easy to use and represents an alternative to current detection methods coupled with nucleic acid amplification reactions such as electrochemiluminescence, or those based on more expensive and time consuming methods such as ELISA or tissue culture.  相似文献   

6.
Allen PB  Arshad SA  Li B  Chen X  Ellington AD 《Lab on a chip》2012,12(16):2951-2958
This article describes the use of non-enzymatic nucleic acid circuits based on strand exchange reactions to detect target sequences on a paperfluidic platform. The DNA circuits that were implemented include a non-enzymatic amplifier and transduction to a fluorescent reporter; these yield an order of magnitude improvement in detection of an input nucleic acid signal. To further improve signal amplification and detection, we integrated the enzyme-free amplifier with loop-mediated isothermal amplification (LAMP). By bridging the gap between the low concentrations of LAMP amplicons and the limits of fluorescence detection, the non-enzymatic amplifier allowed us to detect as few as 1200 input templates in a paperfluidic format.  相似文献   

7.
8.
Kivlehan F  Mavré F  Talini L  Limoges B  Marchal D 《The Analyst》2011,136(18):3635-3642
We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.  相似文献   

9.
We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. Figure
The combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides  相似文献   

10.
Adler M  Wacker R  Niemeyer CM 《The Analyst》2008,133(6):702-718
The versatility of immunoassays for the detection of antigens can be combined with the signal amplification power of nucleic acid amplification techniques in a broad range of innovative detection strategies. This review summarizes the spectrum of both, DNA-modification techniques used for assay enhancement and the resulting key applications. In particular, it focuses on the highly sensitive immuno-PCR (IPCR) method. This technique is based on chimeric conjugates of specific antibodies and nucleic acid molecules, the latter of which are used as markers to be amplified by PCR or related techniques for signal generation and read-out. Various strategies for the combination of antigen detection and nucleic acid amplification are discussed with regard to their laboratory analytic performance, including novel approaches to the conjugation of antibodies with DNA, and alternative pathways for signal amplification and detection. A critical assessment of advantages and drawbacks of these methods for a number of applications in clinical diagnostics and research is conducted. The examples include the detection of viral and bacterial antigens, tumor markers, toxins, pathogens, cytokines and other targets in different biological sample materials.  相似文献   

11.
12.
Liu C  Geva E  Mauk M  Qiu X  Abrams WR  Malamud D  Curtis K  Owen SM  Bau HH 《The Analyst》2011,136(10):2069-2076
A simple, point of care, inexpensive, disposable cassette for the detection of nucleic acids extracted from pathogens was designed, constructed, and tested. The cassette utilizes a single reaction chamber for isothermal amplification of nucleic acids. The chamber is equipped with an integrated, flow-through, Flinders Technology Associates (Whatman FTA?) membrane for the isolation, concentration, and purification of DNA and/or RNA. The nucleic acids captured by the membrane are used directly as templates for amplification without elution, thus simplifying the cassette's flow control. The FTA membrane also serves another critical role-enabling the removal of inhibitors that dramatically reduce detection sensitivity. Thermal control is provided with a thin film heater external to the cassette. The amplification process was monitored in real time with a portable, compact fluorescent reader. The utility of the integrated, single-chamber cassette was demonstrated by detecting the presence of HIV-1 in oral fluids. The HIV RNA was reverse transcribed and subjected to loop-mediated, isothermal amplification (LAMP). A detection limit of less than 10 HIV particles was demonstrated. The cassette is particularly suitable for resource poor regions, where funds and trained personnel are in short supply. The cassette can be readily modified to detect nucleic acids associated with other pathogens borne in saliva, urine, and other body fluids as well as in water and food.  相似文献   

13.
14.
Liu C  Mauk MG  Hart R  Qiu X  Bau HH 《Lab on a chip》2011,11(16):2686-2692
A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.  相似文献   

15.
MicroRNA (miRNA)是一类内源性、进化高度保守的小分子非编码RNA,通过识别同源序列及干扰转录、翻译或表观遗传以调节基因的表达。研究发现,某些miRNA的异常表达与疾病相关,可作为生物标志物或药物靶点为疾病诊断、治疗及预后提供新思路,而准确测定miRNA的表达是其应用于临床的关键。本文结合近年来研究成果对传统检测方法及其改进和等温核酸扩增的新技术进行概述,分析这些方法的优势与不足。  相似文献   

16.
17.
Real-time PCR has revolutionized PCR from qualitative to quantitative. As an isothermal DNA amplification technique, rolling circular amplification (RCA) has been demonstrated to be a versatile tool in many fields. Development of a simple, highly sensitive, and specific strategy for real-time monitoring of RCA will increase its usefulness in many fields. The strategy reported here utilized the specific fluorescence response of thioflavin T (ThT) to G-quadruplexes formed by RCA products. Such a real-time monitoring strategy works well in both traditional RCA with linear amplification efficiency and modified RCA proceeded in an exponential manner, and can be readily performed in commercially available real-time PCR instruments, thereby achieving high-throughput detection and making the proposed technique more suitable for biosensing applications. As examples, real-time RCA-based sensing platforms were designed and successfully used for quantitation of microRNA over broad linear ranges (8 orders of magnitude) with a detection limit of 4 aM (or 0.12 zmol). The feasibility of microRNA analysis in human lung cancer cells was also demonstrated. This work provides a new method for real-time monitoring of RCA by using unique nucleic acid secondary structures and their specific fluorescent probes. It has the potential to be extended to other isothermal single-stranded DNA amplification techniques.  相似文献   

18.
Owing to its important physiological functions, especially as molecular biomarkers of diseases, RNA is an important focus of biomedicine and biochemical sensing. Signal amplification detection has been put forward because of the need for accurate identification of RNA at low expression levels, which is significant for the early diagnosis and therapy of malignant diseases. However, conventional amplification methods for RNA analysis depend on the use of enzymes, fixation of cells, and thermal cycling, which confine their performance to cell lysates or dead cells, thus the imaging of RNA in living cells remained until recently little explored. In recent years, the advance of isothermal amplification of nucleic acids has opened paths for meeting this need in living cells. This minireview tracks the development of in situ amplification assays for RNAs in living cells, and highlights the potential challenges facing this field, aiming to improve the development of in vivo isothermal amplification as well as usher in new frontiers in this fertile research area.  相似文献   

19.
A review is presented of nucleic acid amplification-based methodology, specifically polymerase chain reaction (PCR)-based assays, for the detection of Listeria monocytogenes in food and environmental samples. Until recently, developmental challenges including poor sensitivity, due in part to reaction inhibition by components of the sample matrix, and the potential for false-positive reactions have limited routine application of PCR-based screening assays. Commercial assays address these challenges while offering convenient, standardized protocols, a high level of automation, and results within 2 days after the sampling date. Although sample enrichment is necessary to achieve desired detection limits, continued efforts toward template purification will facilitate the development of assays offering real-time, quantitative results. The development of ribonucleic acid (RNA) amplification-based assays may increase in importance, particularly if end-product testing is prioritized by regulatory agencies, as messenger RNA appears to serve as an accurate indicator of cell viability. Further, the increase in target copy number may improve assay sensitivity. PCR-based screening methods offer efficient, reliable results and are ideal for monitoring the presence of L. monocytogenes in foods and in the food processing environment.  相似文献   

20.
Nucleic acid extraction is one of the bases in molecular biology and it is the indispensable process for nucleic acid detection. Due to its excellent characteristics, the method based on magnetic beads has become one of the main methods for nucleic acid extraction.In this research, we have developed a rapid high-quality universal nucleic acid extraction kit based on magnetic beads(MBs) and named it MB-100. Some factors affecting nucleic acid extraction were optimized, such as particle size of MBs, surface groups of MBs and lysis time. Results demonstrated that micron-grade MBs@SiO_2 particles were much more appropriate for nucleic acid extraction and lysis time was 5 min. Simultaneously, the performance of MB-100 was explored. Results showed that it had much higher extraction efficiency than other two commercial kits, and the following PCR reaction also had much higher amplification efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号