首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《中国化学快报》2021,32(9):2873-2876
The development of fluorescent probes enabling to distinguish Cys, Hcy and GSH has always been a considerable challenge, in particular the distinction of Hcy and other two biothiols, because Hcy has a very similar structure with Cys and a relatively lower concentration in living organisms. In this work, a special o-dialdehyde fluorescent probe, quinoline-2,3-dicarboxaldehyde (QDA), has been synthesized and demonstrated superior performance in differentiating detection of Hcy and GSH, which is different from the previous reported o-dialdehyde probes specifically detecting GSH. Furthermore, the probe can selectively distinguish Hcy and GSH from different signal channels in living cells and zebrafish, meaning it has great potential in biological applications. This finding will provide a novel idea for the design of fluorescent probes to distinguish biothiols.  相似文献   

2.
We synthesized a new coumarin-based probe TP, containing a disulfide moiety, to detect biothiols in cells. A fluorescence turn-on response is induced by the thiol–disulfide exchange of the probe, with subsequent intramolecular benzothiazolidine ring formation giving rise to a fluorescent product. The probe exhibits an excellent selectivity for cysteine (Cys) and homocysteine (Hcy) over glutathione (GSH) and other amino acids. The fluorescent probe also exhibits a highly sensitive fluorescence turn-on response to Cys and Hcy with detection limits of 0.8 μM for Cys and 0.5 μM for Hcy. In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the probe TP could be an efficient fluorescent detector for thiols in living cells.  相似文献   

3.
Homocysteine(Hcy), cysteine(Cys) and glutathione(GSH) play crucial roles in redox homeostasis during mitochondria functions. Simultaneous differentiation and visualization of mitochondrial biothiols dynamics are significant for understanding cell metabolism and their related diseases. Herein, a multisitebinding fluorescent probe(MCP) was developed for simultaneous sensing of mitochondrial Cys, GSH and Hcy from three fluorescence channels for the first time. This novel probe exhibited rapid fluor...  相似文献   

4.
A novel fluorescent probe was developed by integrating chlorinated coumarin and benzothiazolylacetonitrile and exploited for simultaneous detection of cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). Featuring four binding sites and different reaction mechanisms for different biothiols, this probe exhibited rapid fluorescence turn‐on for distinguishing Cys, Hcy, and GSH with 108‐, 128‐, 30‐fold fluorescence increases at 457, 559, 529 nm, respectively, across different excitation wavelengths. Furthermore, the probe was successfully applied to the fluorescence imaging of endogenous Cys and GSH and exogenous Cys, Hcy, and GSH in living cells.  相似文献   

5.
A novel fluorescent probe was developed by integrating chlorinated coumarin and benzothiazolylacetonitrile and exploited for simultaneous detection of cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). Featuring four binding sites and different reaction mechanisms for different biothiols, this probe exhibited rapid fluorescence turn‐on for distinguishing Cys, Hcy, and GSH with 108‐, 128‐, 30‐fold fluorescence increases at 457, 559, 529 nm, respectively, across different excitation wavelengths. Furthermore, the probe was successfully applied to the fluorescence imaging of endogenous Cys and GSH and exogenous Cys, Hcy, and GSH in living cells.  相似文献   

6.
基于光诱导电子转移(PET)机制,利用Cys亲核性较强,能够与探针分子发生亲核取代反应,使丙烯酰基离去,使探针分子体系内PET过程失效,合成了一种特异性识别半胱氨酸的荧光探针。当向探针溶液分别加入多种测试物时,除与Cys结构类似的Hcy和GSH会引起探针溶液微弱的荧光变化外,其他氨基酸均不会引起探针溶液荧光强度的变化,该探针对Cys具有良好的选择性和灵敏度,可在生理条件下检测Cys,并且区分Hcy和GSH。同时,该探针成功实现了细胞内Cys的荧光成像,为在生物学及医学中的实际应用建立了一种特异性识别Cys的分析方法。  相似文献   

7.
A chlorinated coumarin-aldehyde was developed as a colorimetric and ratiometric fluorescent probe for distinguishing glutathione (GSH), cystenine (Cys) and homocysteine (Hcy). The GSH-induced substitution-cyclization and Cys/Hcy-induced substitution-rearrangement cascades lead to the corresponding thiol-coumarin-iminium cation and amino-coumarin-aldehyde with distinct photophysical properties. The probe can be used to simultaneously detect GSH and Cys/Hcy by visual determination based on distinct different colors – red and pale-yellow in PBS buffer solution by two reaction sites. From the linear relationship of fluorescence intensity and biothiols concentrations, it was determined that the limits of detection for GSH, Hcy and Cys are 0.08, 0.09 and 0.18 μM, respectively. Furthermore, the probe was successfully used in living cell imaging with low cell toxicity.  相似文献   

8.
By pairing two fluoropho res according to their optical prope rties such as absorption spectral overlap and absorptivity,fluorescent quantum yield and emission spectral separation,a bifunctional fluorescent probe,TQBF-NBD,was rationally designed and synthesized to discriminatively sense Hcy/Cys and GSH with good selectivity and sensitivity.It is noted that this probe could work under a single-wave length excitation and displayed a mega-large Stokes shift.TQBF-NBD reacted with Hcy/Cys to give a mixed green-red fluorescence and displayed a red fluorescence upon the treatment with GSH.Distinguishable imaging of intracellular Hcy/Cys from GSH with the help of TQBF-NBD was realized in living cells and zebrafish.  相似文献   

9.
《中国化学快报》2021,32(12):3870-3875
Mitochondria is the main organelle for the production of reactive sulfur species (RSS), such as homocysteine (Hcy), cysteine (Cys), glutathione (GSH) and sulfur dioxide (SO2). These compounds participate in a large number of physiological processes and play an extremely important role in maintaining the balance of life systems. Abnormal concentration and metabolism are closely related to many diseases. Due to their similarities in chemical properties, it is challenging to develop a single fluorescent probe to distinguish them simultaneously. Here, we synthesized the probe PI-CONBD with three fluorophores, NBD-Cl and benzopyranate as the reaction sites of GSH/Cys/Hcy and SO2, respectively. Three biothiols all could cleavage ether bond to release benzopyrylium and coumarin moiety, which emitted red and blue fluorescence, but Cys/Hcy also could do intramolecular rearrangement after nucleophilic substitution, resulting in yellow fluorescence. Thus the probe can distinguish Cys/Hcy and GSH. Subsequently, only SO2 could quench red fluorescence by adding CC of benzopyrylium. The probe also could localize well in mitochondria by oxonium ion for all kinds of cells. The probe not only could detect above sulfur-containing active substances of intracellular and extracellular but also monitor the level of them under oxidative stress and apoptosis process in living cells and zebrafish.  相似文献   

10.
A phenyl-selenium-substituted coumarin probe was synthesized for the purpose of achieving highly selective and extremely rapid detection of glutathione (GSH) over cysteine (Cys)/homocysteine (Hcy) without background fluorescence. The fluorescence intensity of the probe with GSH shows a ∼100-fold fluorescent enhancement compared with the signal generated for other closely related amino acids, including Cys and Hcy. Importantly, the substitution reaction with the sulfhydryl group of GSH at the 4-position of the probe, which is doubly-activated by two carbonyl groups, occurs extremely fast, showing subsecond maximum fluorescence intensity attainment; equilibrium was reached within 100 ms (UV-vis). The probe selectivity for GSH was confirmed in Hep3B cells by confocal microscopy imaging.  相似文献   

11.
《中国化学快报》2022,33(11):4943-4947
Cascading reactions in fluorophores accompanied by the replacement of different fluorescence wavelengths can be used to develop luminescent materials and reactive fluorescent probes. Based on multiple signal channels, the selectivity of probes can be improved and the range of response to guest molecule recognition can be expanded. By regulating the position, number, and activity of active sites in fluorophores, fluorescent probes that successively react with thiol and amino groups in cysteine (Cys), homocysteine (Hcy) have been developed, which can only react with the thiol group of GSH. In this paper, we report the first probe capable of cascading nucleophilic substitution reaction with the thiol group and amino group of GSH at a single reaction site, and showed the dual-color recognition of GSH, which improved the selectivity of GSH also was an extension of GSH probes. The probe Rho-DEA was based on a TICS fluorophore, and the intramolecular cascade nucleophilic substitution reaction occurs with Cys/Hcy. The thiol substitution of the first step reaction with Cys/Hcy was quenched due to intersystem crossing to triplet state, so GSH can be selectively recognized from the fluorescence signal. Rho-DEA has the ability of mitochondrial localization, and finally realized in situ dual-color fluorescence recognition of GSH in mitochondria.  相似文献   

12.
The simultaneous discrimination of Cys, Hcy, and GSH by a single probe is still an unmet challenge. The design and synthesis of a small molecule probe MeO‐BODIPY‐Cl (BODIPY=boron dipyrromethene) is presented, which can allow Cys, Hcy, and GSH to be simultaneously discriminated on the basis of three distinct fluorescence turn‐on responses. The probe reacts with these thiols to form sulfenyl‐substituted BODIPY, which is followed by intramolecular displacement to yield amino‐substituted BODIPY. The kinetic rate of the intramolecular displacement reaction determines the observed different sensing behavior. Therefore, the probe responds to Cys, Hcy, and GSH with fluorescence turn‐on colors of yellow, yellow and red, and red, respectively. With this promising feature in hand, the probe was successfully used in imaging of Cys, Hcy and GSH in living cells.  相似文献   

13.
Glutathione (GSH), the most abundant intracellular biothiol, protects cellular components from damage caused by free radicals and reactive oxygen species (ROS), and plays a crucial role in human pathologies. A fluorescent probe that can selectively sense intracellular GSH would be very valuable for understanding of its biological functions and mechanisms of diseases. In this work, a 3,4‐dimethoxythiophenol‐substituted coumarin‐enone was exploited as a reaction‐type fluorescent probe for GSH based on a chloro‐functionalized coumarin‐enone platform. In the probe, the 3,4‐dimethoxythiophenol group functions not only as a fluorescence quencher through photoinduced electron transfer (PET) to ensure a low background fluorescence, but also as a reactive site for biothiols. The probe displays a dramatic fluorescence turn‐on response toward GSH with the long‐wavelength emission (600 nm) and significant Stokes shift (100 nm). The selectivity of the probe toward GSH over cysteine (Cys), homocysteine (Hcy), and other amino acids was demonstrated. Assisted by laser‐scanning confocal microscopy, we have demonstrated that the probe could specifically sense GSH over Cys/Hcy in human renal cell carcinoma SiHa cells.  相似文献   

14.
An ESIPT-based fluorescent probe (Probe 1) using acrylate as recognition group for the selective and sensitive detection of cysteine/homocysteine (Cys/Hcy) has been developed. In the presence of Cys/Hcy, this probe was transformed into 1,3-bis(bispyridin-2ylimino)isoindolin-4-ol (dye 4) which displayed red fluorescence with a large Stokes shift (217 nm) when excited. The detection limits are as low as 5.4 nM and 7.0 nM for Cys and Hcy respectively (based on S/N = 3). Importantly, this probe has been successfully demonstrated for the detection of intracellular Cys/Hcy in living cells.  相似文献   

15.
A novel water-soluble red-emissive AIE fluorescence probe for cysteine (Cys) in situ was prepared and the performance of selectivity and sensitivity has been carefully investigated in this study. The probe was established on the electrostatic interaction of sulfonate functionalized tetraphenylethene (TPE) and polycation generated by the reaction between a polymer bearing dinitrobenzenesulfonate groups and Cys. From the experimental results, it was easy to distinguish Cys from glutathione (GSH) and homocysteine (Hcy) with a detection limit of 73 nmol/L. The assay system also possessed strong anti-interference ability against multitudinous amino acids. The Stokes shift was 142 nm and the emission ranged from 550 nm to 850 nm. In addition, double responses in fluorescence and ultraviolet-visible spectra also make the red-emissive assay ideal for sensitive detection and quantification of Cys for most purposes, especially in-situ monitoring of Cys in aqueous medium.  相似文献   

16.
Fang  Hongbao  Chen  Yuncong  Wang  Yanjun  Geng  Shanshan  Yao  Shankun  Song  Dongfan  He  Weijiang  Guo  Zijian 《中国科学:化学(英文版)》2020,63(5):699-706
Biothiols, such as cysteine(Cys) and homocysteine(Hcy), play vital roles in biological homeostasis and are closely related to various pathological and physiological processes in the living systems. Therefore, the in vivo detection of biothiols is of great importance for early diagnosis of diseases and assessment of disease progression. In this work, we developed a near-infrared(NIR) fluorescence and photoacoustic dual-modal molecular probe(NIR-S) that can be specifically activated by Cys or Hcy. The aryl-thioether substituted cyanine probe can undergo nucleophilic substitution and Smiles rearrangement reaction, resulting in specific turn-on NIR fluorescence and ratiometric photoacoustic responses for Hcy/Cys. Thus, NIR-S not only realizes the specific NIR fluorescence and photoacoustic dual mode imaging to detect Hcy/Cys in solution, but also can be applied to living cells and mice to detect Hcy/Cys. This work provided a practical tool to detect Hcy/Cys levels in vivo, which would be beneficial for the early diagnosis and progress of diseases.  相似文献   

17.
A highly water soluble fluorescent probe was developed for sensitive and selective detection of biothiols with a red emission and a large Stokes shift. The probe was successfully applied to detect biothiols both in aqueous solution and in living cells.  相似文献   

18.
Studying numerous biologically important species simultaneously is crucial to understanding cellular functions and the root causes of related diseases. Direct visualization of endogenous biothiols in biological systems is of great value to understanding their biological roles. Herein, a novel multi‐signal fluorescent probe was rationally designed and exploited for the simultaneous sensing of homocysteine (Hcy), cysteine (Cys), and glutathione (GSH) using different emission channels. This probe was successfully applied to the simultaneous discrimination between and visualization of endogenous Hcy, Cys, GSH, and their transformation in living cells.  相似文献   

19.
生物硫醇(包含半胱氨酸、高半胱氨酸和谷胱甘肽)在生命活动中扮演了重要的角色,其浓度的异常变化与某些疾病息息相关,因此对硫醇的检测具有重要意义.荧光探针因具有灵敏度高、时空分辨率好、无损伤、可视化等优势,在生物硫醇的检测方面得到了高度重视.利用硫醇在分子结构上的共同点(含巯基的氨基酸)和差异(分子大小、亲核性、空间位阻、细胞内含量),可通过迈克尔加成、亲核芳基取代、加成环化等反应实现对硫醇的选择性检测.综述了近3年来硫醇荧光探针领域的研究进展.首先介绍了对硫醇有选择性识别的荧光探针,随后分类讨论了对半胱氨酸、高半胱氨酸和谷胱甘肽各具有特异性检测的荧光探针,并重点介绍了分子设计、识别机理、荧光性质和成像应用,初步探讨了部分探针在监测细胞生命活动中的作用,同时还对本领域的发展提出了展望.  相似文献   

20.
Studying numerous biologically important species simultaneously is crucial to understanding cellular functions and the root causes of related diseases. Direct visualization of endogenous biothiols in biological systems is of great value to understanding their biological roles. Herein, a novel multi‐signal fluorescent probe was rationally designed and exploited for the simultaneous sensing of homocysteine (Hcy), cysteine (Cys), and glutathione (GSH) using different emission channels. This probe was successfully applied to the simultaneous discrimination between and visualization of endogenous Hcy, Cys, GSH, and their transformation in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号