首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first examples of pyrrole‐ and thiophene‐bridged 5,15‐diazaporphyrin (DAP) dimers are prepared through Stille coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl) with the respective 2,5‐bis(tributylstannyl)heteroles. The effects of the heterole spacers and meso nitrogen atoms on the optical, electrochemical, and magnetic properties of the DAP dimers are investigated by UV/Vis absorption spectroscopy, density functional theory calculations, magnetic circular dichroism spectroscopy, cyclic voltammetry, and EPR spectroscopy. The heterole spacers are found to have a significant impact on the electronic transitions over the entire π‐system. In particular, the pyrrole‐bridged DAP dimers exhibit high light‐harvesting potential in the low‐energy visible/near‐infrared region owing to the intrinsic charge‐transfer character of the lowest excitation.  相似文献   

2.
meta‐ and para‐Phenylenediamine‐fused nickel(II) porphyrin dimers were synthesized by SNAr reaction of meso,β,β‐trichloro nickel(II) porphyrin with meta‐ and para‐phenylenediamines and subsequent Pd‐catalyzed intramolecular C?H arylation. Their tetrachlorinated dication diradicals are very stable, allowing SQUID magnetometry and revealing clear open‐shell characters for both meta and para isomers with ferro‐ and anti‐ferromagnetic interactions, respectively. The nitrogen analogue of Thiele's hydrocarbon usually displays predominant closed‐shell nature but its hidden diradical characters increase either in a twisted conformation or upon insertion of an additional phenylene spacer. The observed distinct diradical nature of the para‐congener indicates that diradical properties can be enhanced also by efficient spin delocalization.  相似文献   

3.
The first examples of β–β directly linked, acetylene‐bridged, and butadiyne‐bridged 5,15‐diazaporphyrin dimers have been prepared by palladium‐catalyzed coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl). The effects of the linking modes and meso‐nitrogen atoms on the structural, optical, electrochemical, and magnetic properties of the distributed π systems were investigated by using X‐ray crystallography, UV/Vis absorption spectroscopy, DFT calculations, cyclic voltammetry, and ESR spectroscopy. Both the electronic and steric effects of the meso‐nitrogen atoms play an important role in the highly coplanar geometry of the directly linked dimers. The direct β–β linkage produces enhanced π conjugation and electron‐spin coupling between the two diazaporphyrin units.  相似文献   

4.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

5.
There is a paucity of data concerning the structures of six‐ and seven‐membered tellurium‐ and nitrogen‐containing (Te—N) heterocycles. The title compounds, C8H7NOTe, (I), and C9H9NOTe, (II), represent the first structurally characterized members of their respective classes. Both crystallize with two independent molecules in the asymmetric unit. When compared to their sulfur analogs, they exhibit slightly greater deviations from planarity to accommodate the larger chalcogenide atom, with (II) adopting a pronounced twist‐boat conformation. The C—Te—C angles of 85.49 (15) and 85.89 (15)° for the two independent molecules of (I) were found to be somewhat smaller than those of 97.4 (2) and 97.77 (19)° for the two independent molecules of (II). The C—Te bond lengths [2.109 (4)–2.158 (5) Å] are in good agreement with those predicted by the covalent radii. Intermolecular N—H...O hydrogen bonding in (I) forms centrosymmetric R22(8) dimers, while that in (II) forms chains. In addition, intermolecular Te...O contacts [3.159 (3)–3.200 (3) Å] exist in (I).  相似文献   

6.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

7.
Lewis acid or Brønsted acid catalyzed reactions of vinylidene cyclopropanes (VDCPs), 1 , with activated carbon–nitrogen, nitrogen–nitrogen, and iodine–nitrogen double‐bond‐containing compounds have been thoroughly investigated. We found that pyrrolidine and 1,2,3,4‐tetrahydroquinoline derivatives can be formed in good yields in the reactions of VDCPs 1 with ethyl (arylimino)acetates 2 by a [3+2] cycloaddition or intramolecular Friedel–Crafts reaction pathway. Based on these results, we found that activated carbon–nitrogen and nitrogen–nitrogen double‐bond‐containing compounds, such as N‐toluene‐4‐sulfonyl (N‐Ts) imines 5 and diisopropylazodicarboxylate ( 7 ), can also react with VDCPs 1 to give [3+2] cycloaddition products in moderate to good yields in the presence of a Lewis acid. When Ntert‐butoxycarbonyl aldimine 9 was used as the substrate, six‐membered cycloaddition products 10 and 11 were formed in moderate yields in the presence of a Brønsted acid, trifluoromethanesulfonic acid (TfOH). The reactions of VDCPs 1 with N‐Ts‐iminophenyliodinane ( 12 ) were also carried out in the presence of (CuOTf)2 ? C6H6 and it was found that nitrogen‐containing indene derivatives 13 were obtained, rather than the aziridination products. Plausible mechanisms for all of these transformations are discussed, based on the obtained results.  相似文献   

8.
The title isomers, namely 3‐chloro‐N‐[1‐(1H‐pyrrol‐2‐yl)ethylidene]aniline, (I), and 4‐chloro‐N‐[1‐(1H‐pyrrol‐2‐yl)ethylidene]aniline, (II), both C12H11ClN2, differ in the position of the chlorine substitution. Both compounds have the basic iminopyrrole structure, which shows a planar backbone with similar features. The dihedral angle formed by the planes of the pyrrole and benzene rings is 75.65 (7)° for (I) and 86.56 (8)° for (II). The H atom bound to the pyrrole N atom is positionally disordered and partial protonation occurs at the imino N atom in (I), while this phenomenon is absent from the structure of (II). Packing interactions for both compounds include intermolecular N—H...N hydrogen bonds and C—H...π interactions, forming centrosymmetric dimers for both (I) and (II).  相似文献   

9.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

10.
In the title compounds, C11H18N2, (II), and C13H20N2O, (III), the pyrrolidine rings have twist conformations. Compound (II) crystallizes with two independent molecules (A and B) in the asymmetric unit. The mean planes of the pyrrole and pyrrolidine rings are inclined to one another by 89.99 (11) and 89.35 (10)° in molecules A and B, respectively. In (III), the amide derivative of (II), the same dihedral angle is much smaller, at only 13.42 (10)°. In the crystal structure of (II), the individual molecules are linked via N—H...N hydrogen bonds to form inversion dimers, each with an R22(12) graph‐set motif. In the crystal structure of (III), the molecules are linked via N—H...O hydrogen bonds to form inversion dimers with an R22(16) graph‐set motif.  相似文献   

11.
2‐Amino‐4‐methoxy‐6‐phenyl‐11H‐pyrimido[4,5‐b][1,4]benzodiazepine, C18H15N5O, (I), and its 6‐(2‐fluorophenyl)‐, 6‐(3‐nitrophenyl)‐ and 6‐(4‐methoxyphenyl)‐ analogues, viz. C18H14FN5O, (II), C18H14N6O3, (III), and C19H17N5O2, (IV), respectively, all adopt molecular conformations which are almost identical, containing boat‐shaped seven‐membered rings. In each structure, paired N—H...N hydrogen bonds link the molecules into centrosymmetric dimers. In each of (I)–(III), the dimers are further linked, forming a different three‐dimensional framework in each case, while in compound (IV) the dimers are linked into sheets. The significance of this study lies in the observation of different crystal structures in four compounds whose molecular structures are very similar.  相似文献   

12.
The structures are presented for both diastereomers of the title compound, C15H20O4, produced by base‐catalyzed self‐condensation of cyclo­hexane‐cis‐1,2‐di­carboxyl­ic anhydride in refluxing triethyl­amine. Equilibration of either diastereomer under the condensation conditions yielded the same 5:3 mixture. In the crystal, one diastereomer, (II), is ordered, while the other, (I), displays both flexional ring disorder and carboxyl disorder; both aggregate as centrosymmetric hydrogen‐bonded dimers [for (I), O?O = 2.680 (2) Å; for (II), O?O = 2.635 (4) Å].  相似文献   

13.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

14.
The title compound, C14H14ClN, is a chloro analogue of tacrine, an acetylcholinesterase inhibitor. The compound comprises a seven‐membered alicyclic ring whose CH donor groups are engaged in extensive intermolecular interactions. The important feature of this crystal structure is that, regardless of the presence of two typical hydrogen‐bonding acceptors, viz. chlorine and nitrogen, the corresponding C—H...Cl and C—H...N interactions take no significant role in crystal stabilization. The molecules form dimers through π–π interactions with an interplanar distance between interacting pyridine rings of 3.576 (1) Å. Within the dimers, the molecules are additionally interconnected by four C—H...π interactions. The dimers arrange into regular columns via further intermolecular C—H...π interactions.  相似文献   

15.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

16.
《中国化学》2018,36(10):945-949
The palladium(0)‐catalyzed nitrogen insertion into cyclic Si—Si bonds has been realized by using N‐tosylhydrazones/diazo compounds as the nitrogen source. The palladium(II) nitrene formation and subsequent migratory insertion process are proposed as the key steps for this reaction.  相似文献   

17.
Molecules of 1,2‐bis(4‐bromophenyl)‐1H‐benzimidazole, C19H12Br2N2, (I), and 2‐(4‐bromophenyl)‐1‐(4‐nitrophenyl)‐1H‐benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C—H...N and parallel‐displaced π‐stacking interactions favoured by the appropriate disposition of N‐ and C‐bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C—X...D (X = H, NO2; D = O, π) interactions.  相似文献   

18.
The three organic two‐photon‐absorbing cycloalkanone chromophores 2,4‐bis[4‐(diethylamino)benzylidene]cyclobutanone, C26H32N2O ( I ), 2,5‐bis[4‐(diethylamino)benzylidene]cyclopentanone, C27H34N2O ( II ), and 2,6‐bis[4‐(diethylamino)benzylidene]cyclohexanone, C28H36N2O ( III ), were obtained by a reaction between 4‐(diethylamino)benzaldehyde and the corresponding cycloalkanone and were characterized by single‐crystal X‐ray diffraction studies, as well as density functional theory (DFT) quantum‐chemical calculations. Molecules of this series have three main fragments, i.e. central acceptor (A) and two terminal donors (D1 and D2) and represent examples of the D1–π–A–π–D2 molecular design. All three compounds crystallize with two crystallographically independent molecules in the asymmetric unit ( A and B ) and are distinguished by the conformations of both the molecular Et2N—C6H4—C=C—C(=O)—C=C—C6H4—NEt2 backbone (arcuate or linear) and the terminal diethylamino substituents (syn‐ or antiperiplanar to the plane of the molecule). The central four‐ and five‐membered rings in I and II are almost planar, and the six‐membered ring in III adopts a sofa conformation. In the crystals of I – III , the two independent molecules A and B form hydrogen‐bonded [ A … B ] dimers via intermolecular C—H…O hydrogen bonds. Furthermore, the [ A … B ] dimers in I are bound by intermolecular C—H…O hydrogen bonds into two‐tier puckered layers, whereas in the crystals of II and III , the [ A … B ] dimers are stacked along the c and a axes, respectively. Taking into account the decreasing steric strain upon expanding the central ring, compound I might be more efficient as a two‐photon absorption chromophore than compounds II and III , which corresponds to the results of spectroscopic studies.  相似文献   

19.
Molecules of (E)‐3‐(2‐chloro‐6‐methylquinolin‐3‐yl)‐1‐(5‐iodo‐2‐thienyl)prop‐2‐en‐1‐one, C17H11ClINOS, (I), and (E)‐3‐(2‐chloro‐6‐methylquinolin‐3‐yl)‐1‐(5‐methyl‐2‐furyl)prop‐2‐en‐1‐one, C18H14ClNO2, (II), adopt conformations slightly twisted from coplanarity. Both structures are devoid of classical hydrogen bonds. However, nonclassical C—H...O/N interactions [with C...O = 3.146 (5) Å and C...N = 3.487 (3) Å] link the molecules into chains extended along the b axis in (I) and form dimers with an R22(8) motif in (II). The structural analysis of these compounds provides an insight into the correlation between molecular structures and intermolecular interactions in compounds for drug development.  相似文献   

20.
9,10‐Di­phenyl‐9,10‐epi­dioxy­anthracene, C26H18O2, (I), was accidentally used in a photo­oxy­genation reaction that produced 9,10‐di­hydro‐10,10‐di­methoxy‐9‐phenyl­anthracen‐9‐ol, C22H20O3, (II). In both compounds, the phenyl rings are approximately orthogonal to the anthracene moiety. The conformation of the anthracene moiety differs as a result of substitution. Intramolecular C—H⃛O interactions in (I) form two approximately planar S(5) rings in each of the two crystallographically independent mol­ecules. The packing of (I) and (II) consists of molecular dimers stabilized by C—H⃛O interactions and of molecular chains stabilized by O—H⃛O interactions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号