首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
The dipolar oxathiazyne‐like sulfinylnitrene RS(O)N, a highly reactive α‐oxo nitrene, has been rarely investigated. Upon flash vacuum pyrolysis of sulfinyl azide CF3S(O)N3 at 350 °C, an elusive sulfinylnitrene CF3S(O)N was generated in the gas phase in its singlet ground state and was characterized by matrix‐isolation IR spectroscopy. Further fragmentation of CF3S(O)N at 600 °C produced CF3 and a novel iminyl radical OSN, an SO2 analogue, which were unambiguously identified by IR spectroscopy. Consistent with the experimental observations, DFT calculations clearly support a stepwise decomposition mechanism of CF3S(O)N3.  相似文献   

2.
The elusive triplet fluorocarbonyl nitrene, FC(O)N (X3A′′), has been generated in high yield from matrix‐isolated FC(O)N3 by ArF excimer laser photolysis (λ=193 nm). As a side product FNCO was formed. The novel nitrene was characterized by IR, UV/Vis, EPR spectroscopy, and quantum‐chemical calculations. All six fundamental vibrations of FC(O)N at 1681.3, 1193.8, 879.8, 646.5, 588.7, and 434.8 cm?1 (argon matrix, 16 K), their 12/13C, 16/18O, and 14/15N isotopic shifts, and four electronic transitions at T0=13 890, 25 428, 29 166, and 30 900 cm?1 that exhibit vibrational fine structures have been detected. Under visible‐light irradiation at λ≥495 nm, FC(O)N reacted with molecular N2 in the matrix cage at 6 K to give back FC(O)N3, whereas near‐UV irradiation at λ≥335 nm yielded FNCO. The singlet–triplet energy gaps of different carbonyl nitrenes are discussed.  相似文献   

3.
Neutral five‐atomic cumulenes formally consisting of two pseudohalogens (e.g., NCO, NNN, NSO) by sharing the central nitrogen atom are exotic species that have been barely studied. Through flash vacuum pyrolysis of CF3S(O)NCO at ca. 1200 K, sulfinyl isocyanate, bearing resonance structures of O=C−N=S=O and O=C=N−S=O, has been generated in the gas phase and subsequently characterized in cryogenic matrices (Ar and N2). Its reversible conformational (syn and anti) interconversion and photodecomposition were observed.  相似文献   

4.
The rate constants for the gas‐phase SN2 reaction of F?(H2O) with CH3F have been calculated using the dual‐level variational transition state theory including multidimensional tunneling from 50 to 500 K. Tunneling was found to dominate the reaction below 200 K. The deuterium, 13C, and 14C kinetic isotope effects (KIEs) and solvent (D2O) isotope effects (SKIEs) were also calculated in the same temperature range. The results indicated that the deuterium and heavy water substitutions resulted in inverse KIEs (0.6~0.8 ) while the 13C and 14C substitutions resulted in normal KIEs (1.0~1.2) at room temperature. The calculated carbon KIEs increased significantly below 80 K due to the differences in the magnitude of the tunneling effects for different isotopic substitutions.  相似文献   

5.
CF3O2CF3 was photolyzed at 254 nm in the presence of CO in 760 torr N2 or air at 296 K in a static reactor. In N2, the products CF3OC(O)C(O)OCF3 and CF3OC(O)O2C(O)OCF3 were detected by FTIR spectroscopy. In air, the only observed products were CF2O and CO2 and a chain process, initiated by CF3O, was invoked for the conversion of CO to CO2. From both product studies, a mechanism for the CF3O initiated oxidation of CO was derived, involving the addition reaction CF3O2 + CO → CF3OC(O). The rate constant for the reaction CF3O + CO at 296 K at a total pressure of 760 torr air was determined to be k(CF3O + CO) = (5.0 ± 0.9) × 10−14 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
Triplet difluorophosphoryl nitrene F2P(O)N (X3A′′) was generated on ArF excimer laser irradiation (λ=193 nm) of F2P(O)N3 in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS‐QB3 calculations. On visible light irradiation (λ>420 nm) at 16 K F2P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (λ=255 nm) of F2P(O)N (X3A′′) induced a Curtius‐type rearrangement, but instead of a 1,3‐fluorine shift, nitrogen migration to give F2PON is proposed to be the first step of the photoisomerization of F2P(O)N into F2PNO (difluoronitrosophosphine). Formation of novel F2PNO was confirmed with 15N‐ and 18O‐enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P? N bond of 1.922 Å [B3LYP/6‐311+G(3df)] and low bond‐dissociation energy of 76.3 kJ mol?1 (CBS‐QB3) for F2PNO.  相似文献   

7.
Crystals of the title compound, C4H8N5+·C2F3O2, are built up of singly protonated 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium cations and trifluoroacetate anions. The CF3 group of the anion is disordered. The oppositely charged ions interact via almost linear N—H...O hydrogen bonds, forming a CF3COO...C4H8N5+ unit. Two units related by an inversion centre interact through a pair of N—H...N hydrogen bonds, forming planar (CF3COO...C4H8N5+...C4H8N5+·CF3COO) aggregates that are linked by a pair of N—H...O hydrogen bonds into chains running along the c axis.  相似文献   

8.
The oxidation of perfluorobutene‐2 (C4F8) initiated by trifluoromethyl hypofluorite (CF3OF) in presence of O2 has been studied at 323.1, 332.6, 342.5, and 352.0 K, using a conventional static system. The initial pressure of CF3OF was varied between 4.8 and 23.6 Torr, that of C4F8 between 48.7 and 302.4 Torr, and that of O2 between 51.5 and 270.4 Torr. Several runs were made in presence of 325.5–451.2 Torr of N2. The main products were COF2, CF3C(O)F, and CF3OC(O)F. Small amounts of compound containing ? CF(CF3)? O? C(O)CF3 group were also formed, as detected by 13C NMR spectroscopy. The oxidation is a homogeneous short‐chain reaction, attaining, at the pressure of O2 used, the pseudo‐zero‐order condition with respect to O2 as reactant. The reaction is independent of the total pressure. Its basic steps are as follows: the thermal generation of CF3O? radicals by the abstraction of fluorine atom of CF3OF by C4F8, the addition of CF3O? to the alkene, the formation of perfluoroalkoxy radicals RO? in presence of O2, and the decomposition of these radicals via the C? C bond scission, giving products containing ? C(O)F end group and reforming RO? and CF3O? radicals. The mechanism consistent with experimental results is postulated. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 532–541, 2003  相似文献   

9.
Cardiosulfa is a biologically active sulfonamide molecule that was recently shown to induce abnormal heart development in zebrafish embryos through activation of the aryl hydrocarbon receptor (AhR). The present report is a systematic study of solid‐state forms of cardiosulfa and its biologically active analogues that belong to the N‐(9‐ethyl‐9H‐carbazol‐3‐yl)benzene sulfonamide skeleton. Cardiosulfa (molecule 1 ; R1=NO2, R2=H, R3=CF3), molecule 2 (H, H, CF3), molecule 3 (CF3, H, H), molecule 4 (NO2, H, H), molecule 5 (H, CF3, H), and molecule 6 (H, H, H) were synthesized and subjected to a polymorph search and solid‐state form characterization by X‐ray diffraction, differential scanning calorimetry (DSC), variable‐temperature powder X‐ray diffraction (VT‐PXRD), FTIR, and solid‐state (ss) NMR spectroscopy. Molecule 1 was obtained in a single‐crystalline modification that is sustained by N? H???π and C? H???O interactions but devoid of strong intermolecular N? H???O hydrogen bonds. Molecule 2 displayed a N? H???O catemer C(4) chain in form I, whereas a second polymorph was characterized by PXRD. The dimorphs of molecule 3 contain N? H???π and C? H???O interactions but no N? H???O bonds. Molecule 4 is trimorphic with N? H???O catemer in form I, and N? H???π and C? H???O interactions in form II, and a third polymorph was characterized by PXRD. Both polymorphs of molecule 5 contain the N? H???O catemer C(4) chain, whereas the sulfonamide N? H???O dimer synthon R22(8) was observed in polymorphs of 6 . Differences in the strong and weak hydrogen‐bond motifs were correlated with the substituent groups, and the solubility and dissolution rates were correlated with the conformation in the crystal structure of 1 , 2 , 3 , 4 , 5 , 6 . Higher solubility compounds, such as 2 (10.5 mg mL?1) and 5 (4.4 mg mL?1), adopt a twisted confirmation, whereas less‐soluble 1 (0.9 mg mL?1) is nearly planar. This study provides practical guides for functional‐group modification of drug lead compounds for solubility optimization.  相似文献   

10.
The stepwise decomposition of carbonyl diisocyanate, OC(NCO)2, has been studied by using IR spectroscopy in solid argon matrices at 16 K. Upon irradiation with an ArF laser (λ=193 nm), carbonyl diisocyanate split off CO and furnished a new carbonyl nitrene, OCNC(O)N, in its triplet ground state. Two conformers of the nitrene, syn and anti, that were derived from the two conformers of OC(NCO)2 (62 % synsyn and 38 % synanti) were identified and characterized by combining IR spectroscopy and quantum chemical calculations. Subsequent irradiation with visible light (λ>395 nm) caused the Curtius rearrangement of the nitrene into OCNNCO. In addition to the expected decomposition products, N2 and CO, further photolysis of OCNNCO with the ArF laser yielded NOCN, through a diazomethanone (NNCO) intermediate. To further validate our proposed reaction mechanism, ArF‐laser photolysis of the closely related NNNNCO and cyclo‐N2CO in solid argon matrices were also studied. The observations of NOCN and in situ CO‐trapped product OCNNCO provided indirect evidence to support the initial generation of NNCO as a common intermediate during the laser photolysis of OCNNCO, NNNNCO, and cyclo‐N2CO.  相似文献   

11.
Hypervalent hexacoordinate antimony‐ate complex { 2‐Et4N : Rf3SbEt4N+ (Rf: o‐C6H4C(CF3)2O‐)} was synthesized by the reaction of Rf2SbCl with lithium 1,1,1,3,3,3‐hexafluoro‐2‐(2‐lithiophenyl)‐2‐propoxide followed by countercation exchange. Reaction of 2‐Et4N with triethyloxonium tetrafluoroborate gave the O‐ethylated adduct ( 3 ). X‐ray crystallographic analysis of 2‐Et4N and 3 showed distorted octahedral structures of these compounds. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:33–37, 2001  相似文献   

12.
The crystal structures of mono‐ and dinuclear CuII trifluoromethanesulfonate (triflate) complexes with benzyldipicolylamine (BDPA) are described. From equimolar amounts of Cu(triflate)2 and BDPA, a water‐bound CuII mononuclear complex, aqua(benzyldipicolylamine‐κ3N ,N′ ,N ′′)bis(trifluoromethanesulfonato‐κO )copper(II) tetrahydrofuran monosolvate, [Cu(CF3SO3)2(C19H19N3)(H2O)]·C4H8O, (I), and a triflate‐bridged CuII dinuclear complex, bis(μ‐trifluoromethanesulfonato‐κ2O :O ′)bis[(benzyldipicolylamine‐κ3N ,N′ ,N ′′)(trifluoromethanesulfonato‐κO )copper(II)], [Cu2(CF3SO3)4(C19H19N3)2], were synthesized. The presence of residual moisture in the reaction medium afforded water‐bound complex (I), whereas dinuclear complex (II) was synthesized from an anhydrous reaction medium. Single‐crystal X‐ray structure analysis reveals that the CuII centres adopt slightly distorted octahedral geometries in both complexes. The metal‐bound water molecule in (I) is involved in intermolecular O—H…O hydrogen bonds with triflate ligands and tetrahydrofuran solvent molecules. In (II), weak intermolecular C—H…F(triflate) and C—H…O(triflate) hydrogen bonds stabilize the crystal lattice. Complexes (I) and (II) were also characterized fully using FT–IR and UV–Vis spectroscopy, cyclic voltammetry and elemental analysis.  相似文献   

13.
The ditopic ligand 1, 2‐bis(benzimidazol‐1‐ylmethyl)benzene (L1) as well as its silver(I) complexes [Ag2L12(CF3CO2)2] ( 1 ) and [Ag2L12](CF3SO3)2 · (L1) · 2H2O · 0.5C2H5OH ( 2 ) were prepared and structures characterized by X‐ray crystallography. The AgI atoms in 1 are trigonally coordinated by two NBIm atoms from the arms of L1 and by one O atom of the anion CF3CO2, while those in 2 are only linearly ligated by NBIm. Different silver salts of CF3CO2 and CF3SO3 lead to different configurations of the dimeric unit [Ag2L12]2+: chair‐form in ( 1 ) but boat‐form in ( 2 ). The discrete molecules in both 1 and 2 are assembled into network structures through face‐to‐face π · · · π stacking and edge‐to‐face C—H · · · π interactions in the crystalline state, as well as N—H · · · O and C—H · · · O hydrogen bonds. Solution 1H NMR studies showed the formation of one sole species in solution or a rapid equilibrium was established on the NMR time scale at room temperature.  相似文献   

14.
Reactions of Thiazyl Halides XSN (X = F, Cl) with Perfluorinated Imines Rf2 NH (Rf = F, CF3, CF3S, (CF3)2C?, (CF3)2S?): Attempted Preparations of Aminothiazyls (?N? S?N) Thiazyl halides or their precursors Cl3S3N3 and FC(O)N?SF2 react with perfluoro imines to provide the corresponding aminothiazyls as unstable and reactive intermediates. While with HNF2 or KF · HNF2 the final products N2F4 and S4N4 are formed, [(CF3)2N]2Hg reacts with Cl3S3N3 to give CF3N?CF2, FSN, and HgCl2. The expected product CF3SN?S?NSCF3 ( 4 ) is obtained from (CF3S)2NH or Hg[N(SCF3)2]2 and FSN probably via (CF3S)2 NSN. Surprisingly, (CF3)2C?NLi forms with ClSN, Cl3S3N3 or [S3N2Cl]Cl in the presence of NH4Cl 4,5-Dihydro-3,3,5,5-tetrakistrifluoromethyl-3H-1λ4,2,4,6-thiatriazine ( 6 ) and (CF3)2C?NSxN?C(CF3)2 (X = 1, 2) ( 7a, b ) as byproducts. A CsF catalyzed reaction at 70 to 80°C between (CF3)2C?NLi and FSN provides low yields of (CF3)2C?N? S? N?S?NCF(CF3)2 ( 8 ) together with 7a, b. The latter are the only products without CsF. When (CF3)2S?NH is treated with FSN, the compounds CF3SCF3, S4N4, and N2 are identified. It is shown by 19F and 14N-n.m.r. spectroscopy that (CF3)S?NSN is an unstable intermediate.  相似文献   

15.
The C,N-chelated tri-, di- and monoorganotin(IV) halides react with equimolar amounts of CF3COOAg to give corresponding C,N-chelated organotin(IV) trifluoroacetates. The set of prepared tri-, di- and monoorganotin(IV) trifluoroacetates bearing the LCN ligand (where LCN is 2-(N,N-dimethylaminomethyl)phenyl-) was structurally characterized by X-ray diffraction analyses, multinuclear NMR and IR spectroscopy. In the case of triorganotin(IV) trifluoroacetates and (LCN)2Sn(OC(O)CF3)2, no tendency to form hydrolytic products, or instability towards the moisture was observed. LCNRSn(OC(O)CF3)2 (where R is n-Bu or Ph) and LCNSn(OC(O)CF3)3 forms upon crystallization from THF in the air mainly dinuclear complexes in which the two tin atoms are interconnected either by hydroxo-bridges or by an oxo-bridge and/or by a bridging trifluoroacetate(s). In the case of hydrolysis of LCN(n-Bu)Sn(OC(O)CF3)2, a zwitterionic stannate of formula LCN(n-Bu)Sn(OC(O)CF3)2·CF3COOH was isolated from the mother liquor, too. Products of hydrolysis of LCN(n-Bu)Sn(OC(O)CF3)2 and LCNSn(OC(O)CF3)3, and some other oxygen bridged organotin(IV) compounds containing the same ligand, were tested as possible catalysts of some transesterification reactions as well as in direct dimethyl carbonate (DMC) synthesis from CO2 and methanol.  相似文献   

16.
N‐sulfinylacylamides R‐C(=O)‐N=S=O react with (CF3)2BNMe2 ( 1 ) to form, by [2+4] cycloaddition, six‐membered rings cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(R)‐O for R = Me ( 2 ), t‐Bu ( 3 ), C6H5 ( 4 ), and p‐CH3C6H4 ( 5 ) while N‐sulfinylcarbamic acid esters R‐O‐C(=O)‐N=S=O react with 1 to yield mixtures of six‐membered (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(OR)‐O) and four‐membered rings (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N(C=O)OR) for R = Me ( 6 and 9 ), Et ( 7 and 10 ), and C6H5 ( 8 and 11 ). The structure of 5 has been determined by X‐ray diffraction.  相似文献   

17.
The synthesis, IR spectrum, and first‐principles characterization of CF3CH(ONO)CF3 as well as its use as an OH radical source in kinetic and mechanistic studies are reported. CF3CH(ONO)CF3 exists in two conformers corresponding to rotation about the RCO? NO bond. The more prevalent trans conformer accounts for the prominent IR absorption features at frequencies (cm?1) of 1766 (N?O stretch), 1302, 1210, and 1119 (C? F stretches), and 761 (O? N? O bend); the cis conformer contributes a number of distinct weaker features. CF3CH(ONO)CF3 was readily photolyzed using fluorescent blacklamps to generate CF3C(O)CF3 and, by implication, OH radicals in 100% yield. CF3CH(ONO)CF3 photolysis is a convenient source of OH radicals in the studies of the yields of CO, CO2, HCHO, and HC(O)OH products which can be difficult to measure using more conventional OH radical sources (e.g., CH3ONO photolysis). CF3CH(ONO)CF3 photolysis was used to measure k(OH + C2H4)/k(OH + C3H6) = 0.29 ± 0.01 and to establish upper limits of 16 and 6% for the molar yields of CO and HC(O)OH from the reaction of OH radicals with benzene in 700 Torr of air at 296 K. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 159–165, 2003  相似文献   

18.
In the crystal structure of [Cu(CF3SO3)(C2N3)(C8H7N5)2]·0.5C2H6O, the CuII atom adopts a distorted octahedral geometry, with the basal plane formed by two N atoms of one dipyrimidinyl­amine ligand, one N atom of the second pyrimidine ligand and a nitrile N atom of the dicyan­amide anion [Cu—N = 1.972 (2)–2.021 (2) Å]. The apical positions are occupied by an N atom of the second ligand [Cu—N = 2.208 (2) Å], and an O atom of the tri­fluoro­methane­sulfonate anion [Cu—O = 2.747 (2) Å] at a semi‐coordination distance. Pairs of inversion‐related N—H⋯N hydrogen bonds of the so‐called Watson–Crick type, augmented by two C—H⋯N contacts, link adjacent complexes into an infinite one‐dimensional chain running in the [101] direction.  相似文献   

19.
The X‐ray structure of the title compound [Pd(Fmes)2(tmeda)] (Fmes=2,4,6‐tris(trifluoromethyl)phenyl; tmeda=N,N,N′,N′‐tetramethylethylenediamine) shows the existence of uncommon C? H???F? C hydrogen‐bond interactions between methyl groups of the TMEDA ligand and ortho‐CF3 groups of the Fmes ligand. The 19F NMR spectra in CD2Cl2 at very low temperature (157 K) detect restricted rotation for the two ortho‐CF3 groups involved in hydrogen bonding, which might suggest that the hydrogen bond is responsible for this hindrance to rotation. However, a theoretical study of the hydrogen‐bond energy shows that it is too weak (about 7 kJ mol?1) to account for the rotational barrier observed (ΔH=26.8 kJ mol?1), and it is the steric hindrance associated with the puckering of the TMEDA ligand that should be held responsible for most of the rotational barrier. At higher temperatures the rotation becomes fast, which requires that the hydrogen bond is continuously being split up and restored and exists only intermittently, following the pulse of the conformational changes of TMEDA.  相似文献   

20.
We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2H) group into alkenes by visible‐light‐driven photoredox catalysis. The use of fac‐[Ir(ppy)3] (ppy=2‐pyridylphenyl) photocatalyst and shelf‐stable Hu's reagent, N‐tosyl‐S‐difluoromethyl‐S‐phenylsulfoximine, as a CF2H source is the key to success. The well‐designed photoredox system achieves synthesis of not only β‐CF2H‐substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single‐step and regioselective formation of C(sp3)–CF2H and C(sp3)?O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号