首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The utility of a three-residue Cu2+ binding motif (ATCUN domain) for studying intermolecular interactions is demonstrated. By comparing a set of 1H-15N correlation spectra recorded on complexes of calmodulin (CaM) and peptides with the ATCUN tag in the presence and absence of Cu2+ the two possible canonical binding orientations of the peptide can be rapidly distinguished. The methodology is confirmed with studies of complexes of CaM and peptides from myosin light chain kinase and CaM kinase kinase, for which high-resolution structures are available, and then applied to a complex with CaM kinase I for which structural data has not been obtained. The orientation of the CaM kinase I and myosin light chain kinase peptides are shown to be identical. In the case of a complex of CaM with a peptide for which structural information is not available, the present methodology, in combination with 1H-15N residual dipolar couplings measured on CaM, and the database of existing CaM-peptide structures, allows a homology model to be built rapidly and with confidence.  相似文献   

2.
Calmodulin (CaM) is a highly conserved intracellular Ca2+-binding protein that exerts important functions in many cellular processes. Prominent examples of CaM-regulated proteins are adenylyl cyclases (ACs), which synthesize cAMP as a central second messenger. The interaction of ACs with CaM represents the link between Ca2+-signaling and cAMP-signaling pathways. Thereby, different AC isoforms stimulated by CaM, comprise diverse mechanisms of regulation by the Ca2+ sensor. To extend the structural information about the detailed mechanisms underlying the regulation of AC8 by CaM, we employed an integrated approach combining chemical cross-linking and mass spectrometry with two peptides representing the CaM-binding regions of AC8. These experiments reveal that the structures of CaM/AC8 peptide complexes are similar to that of the CaM/skeletal muscle myosin light chain kinase peptide complex where CaM is collapsed around the target peptide that binds to CaM in an antiparallel orientation. Cross-linking experiments were complemented by investigating the binding of AC8 peptides to CaM thermodynamically with isothermal titration calorimetry. There were no hints on a complex, in which both AC8 peptides bind simultaneously to CaM, refining our current understanding of the interaction between CaM and AC8.
Figure
The interactions between calmodulin and two peptides, derived from the N- and C-termini of adenylyl cyclase 8, were analyzed by chemical cross-linking and mass spectrometry  相似文献   

3.
Calmodulin (CaM) is an important intracellular calcium‐binding protein. It plays a critical role in a variety of biological and biochemical processes. In this paper, a new electrochemical immunosensing protocol for sensitive detection of CaM was developed by using gold‐silver‐graphene (AuAgGP) hybrid nanomaterials as protein immobilization matrices and gold nanorods (GNRs) as enhanced electrochemical labels. Electrode was first modified with thionine‐chitosan film to provide an immobilization support for gold‐silver‐graphene hybrid nanomaterials. The hybrid materials formed an effective matrix for binding of CaM with high density and improved the electrochemical responses as well. Gold nanorods were prepared for the fabrication of enhanced labels (HRP‐Ab2‐GNRs), which provided a large capacity for HRP‐Ab2 immobilization and a facile pathway for electron transfer. With two‐step immunoassay format, the HRP‐Ab2‐GNRs labels were introduced onto the electrode surface, and produced electrochemical responses by catalytic reaction of HRP toward enzyme substrate of hydrogen peroxide (H2O2) in the presence of thionine. The proposed immunosensor showed an excellent analytical performance for the detection of CaM ranging from 50 pg mL?1 to 200 ng mL?1 with a detection limit of 18 pg mL?1. The immunosensor has also been successfully applied to the CaM analysis in two cancer cells (HepG2 and MCF‐7) with high sensitivity, which has shown great potency for improving clinic diagnosis and treatment for cancer study.  相似文献   

4.
Amphibian peptides which inhibit the formation of nitric oxide by neuronal nitric oxide synthase (nNOS) do so by binding to the protein cofactor, Ca2+calmodulin (Ca2+CaM). Complex formation between active peptides and Ca2+CaM has been demonstrated by negative ion electrospray ionisation mass spectrometry using an aqueous ammonium acetate buffer system. In all cases studied, the assemblies are formed with a 1:1:4 calmodulin/peptide/Ca2+ stoichiometry. In contrast, the complex involving the 20-residue binding domain of the plasma Ca2+ pump C20W (LRRGQILWFRGLNRIQTQIK-OH) with CaM has been shown by previous two-dimensional nuclear magnetic resonance (2D NMR) studies to involve complexation of the C-terminal end of CaM. Under identical conditions to those used for the amphibian peptide study, the ESI complex between C20W and CaM shows specific 1:1:2 stoichiometry. Since complex formation with the studied amphibian peptides requires Ca2+CaM to contain its full complement of four Ca2+ ions, this indicates that the amphibian peptides require both ends of the CaM to effect complex formation. Charge-state analysis and an H/D exchange experiment (with caerin 1.8) suggest that complexation involves Ca2+CaM undergoing a conformational change to a more compact structure.  相似文献   

5.
The C 1 s, N 1 s, and O 1 s core level binding energies (BEs) of the functional groups in amino acids (glycine, aspartic acid, glutamic acid, arginine, and histidine) with varied side‐chains and cell‐binding RGD‐based peptides have been determined and characterized by X‐ray photoelectron spectroscopy with a monochromatic Al Kα source. The zwitterionic nature of the amino acids in the solid state is unequivocally evident from the N 1 s signals of the protonated amine groups and the C 1 s signature of carboxylate groups. Significant adventitious carbon contamination is evident for all samples but can be quantitatively accounted for. No intrinsic differences in the XP spectra are evident between two polymorphs (α and γ) of glycine, indicating that the crystallographic differences have a minor influence on the core level BEs for this system. The two nitrogen centers in the imidazole group of histidine exhibit an N 1 s BE shift that is in line with previously reported data for theophylline and aqueous imidazole solutions, while the nitrogen and carbon chemical shifts reflect the unusual guanidinium chemical environment in arginine. It is shown that the complex envelopes of C 1 s and O 1 s photoemission spectra for short‐chain peptides can be analyzed quantitatively by reference to the less complex XP spectra of the constituent amino acids, provided the peptides are of high enough purity. The distinctive N 1 s photoemission from the amide linkages provides an indicator of peptide formation even in the presence of common impurities, and variations in the relative intensities of N 1 s were found to be diagnostic for each of the three peptides investigated (RGD, RGDS, and RGDSC). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Developing antivirals for influenza A virus (FluA) has become more challenging due to high range of antigenic mutation and increasing numbers of drug-resistant viruses. Finding a selective inhibitor to target highly conserved region of protein-protein interactions interface, thereby increasing its efficiency against drug resistant virus could be highly beneficial. In this study, we used in silico approach to derive FluAPep1 from highly conserved region, PAN-PB1C interface and generated 121 FluAPep1 analogues. Interestingly, we found that the FluAPep1 interaction region in the PAN domain are highly conserved in many FluA subtypes. Especially, FluAPep1 targets two pandemic FluA strains, H1N1/avian/2009 and H3N2/Victoria/1975. All of these FluA subtypes PAN domain (H1N1/H3N2CAN/H3N2VIC/H7N1/H7N2) were superimposed with PAN domain from H17N10 and the calculated root mean standards deviations were less than 3 Å. FlexPepDock analysis revealed that FluAPep1 exhibited higher binding affinity (score -246.155) with the PAN domain. In addition, around 86% of non-hot spot mutated peptides (FluAPep28-122) showed enhanced binding affinity with PAN domain. ToxinPred analysis confirmed that designed peptides were non-toxic. Thus, FluAPep1 and its analogues has potential to be further developed into an antiviral treatment against FluA infection.  相似文献   

7.
采用方波极谱法研究了重金属Pb2+与钙调素(CaM)的结合反应, 直接检测到Pb2+-CaM配合物的存在, 并进一步利用循环伏安法研究了Pb2+-CaM的电极反应. 在pH=6.5时, 用方波极谱法在Pb2+-CaM体系中检测出2个还原峰, 峰电位分别为-0.44~-0.47 V和-0.73~-0.77 V, 说明在Pb2+-CaM体系中铅有2种存在形式, -0.44~-0.47 V的还原峰对应于游离态Pb2+, 电位更负的还原峰对应于配合物[Pb2+-CaM]. 2个还原峰的峰电流均随着cPb2+/cCaM比值增大而增大; 至cPb2+/cCaM≥10后, 配合物[Pb2+-CaM]的峰电流基本不再变化, 而游离态Pb2+的峰电流则继续增大. 利用极谱滴定曲线的拐点可判断出Pb2+在CaM中有10个结合位点. 进一步的测量结果表明, 循环伏安曲线出现游离态Pb2+的氧化峰和还原峰, 而络合态的[Pb2+-CaM]只有其还原峰, 反向电压扫描时不出现阳极波, 即没有相对应的氧化峰出现.  相似文献   

8.
Many cellular reactions involving proteins, including their biosynthesis, misfolding, and transport, occur in confined compartments. Despite its importance, a structural basis of understanding of how confined environments alter protein function is still lacking. Herein, we explore structure–function correlations of calmodulin (CaM), a multidomain protein involved in many calcium‐mediated signaling pathways, in reverse micelles. Confinement dramatically alters CaM structure and function. The protein forms an extended structure in bulk water, but becomes compacted in reverse micelles. In addition, confinement changes the function of CaM. Specifically, the protein binds the MLCK, AcN19, and somatostatin peptides in dilute buffer, but binds only the MLCK and AcN19 peptides in reverse micelles. In summary, we determined a new CaM structure in reverse micelles and demonstrate that confinement can modulate both protein structure and function.  相似文献   

9.
[structure: see text] Many peptides bind to calmodulin (CaM) in a helical conformation. Here we describe a group of synthetic inhibitors of CaM based on an arylamide scaffold that is intended to mimic smMLCK, a CaM-binding helical peptide. Compound 1 showed a K(i) value of 7.10 +/- 1.48 nM in a fluorescence polarization assay that monitors the strong association of CaM and its peptide ligand mastoparan X. ((1)H,(15)N)-HSQC NMR spectroscopy experiments suggested that 1 binds to CaM in an analogous fashion to that of smMLCK.  相似文献   

10.
Antimicrobial peptides of the mastoparans family exert their bactericidal activity by binding to lipid membranes, inducing pores or defects and leaking the internal contents of vesicles and cells. However, this does not seem to be the only mechanism at play, and they might be important in the search for improved peptides with lower undesirable side effects. This work deals with three mastoparans peptides, Polybia-MP-1(MP-1), N2-Polybia-MP-1 (N-MP-1), and Mastoparan X (MPX), which exhibit high sequence homology. They all have three lysine residues and amidated C termini, but because of the presence of two, one, and no aspartic acid residues, respectively, they have +2, +3, and +4 net charges at physiological pH. Here we focus on the effects of these mastoparans peptides on anionic model membranes made of palmitoleyoilphosphatidylcholine (POPC) and palmitoleyoilphosphatidylglycerol (POPG) at 1:1 and 3:1 molar ratios in the presence and in the absence of saline buffer. Zeta potential experiments were carried out to measure the extent of the peptides' binding and accumulation at the vesicle surface, and CD spectra were acquired to quantify the helical structuring of the peptides upon binding. Giant unilamellar vesicles were observed under phase contrast and fluorescence microscopy. We found that the three peptides induced the leakage of GUVs at a gradual rate with many characteristics of the graded mode. This process was faster in the absence of saline buffer. Additionally, we observed that the peptides induced the formation of dense regions of phospholipids and peptides on the GUV surface. This phenomenon was easily observable for the more charged peptides (MPX > N-MP-1 > MP-1) and in the absence of added salt. Our data suggest that these mastoparans accumulate on the bilayer surface and induce a transient interruption to its barrier properties, leaking the vesicle contents. Next, the bilayer recovers its continuity, but this happens in an inhomogeneous way, forming a kind of ply with peptides sandwiched between two juxtaposed membranes. Eventually, a peptide-lipid aggregate forming a lump is formed at high peptide-to-lipid ratios.  相似文献   

11.
A homogeneous phase protein-based assay for the high throughput screening of drugs was developed using enhanced green fluorescent protein (EGFP) as the reporter. For that, a fusion protein between calmodulin (CaM) and EGFP was constructed in order to monitor the conformational changes induced in CaM upon binding to tricyclic anti-depressant drugs. In the presence of Ca2+, CaM undergoes a conformational change exposing a hydrophobic pocket that interacts with CaM-binding proteins, peptides, and drugs. Further, the conformational changes induced in CaM upon binding to Ca2+ and the target analyte drug, leads to a change in the microenvironment of EGFP concomitant with a change in its fluorescence intensity. The observed change in fluorescence intensity of EGFP can be correlated to the concentration of the analyte present in the sample. Further, the response of CaM–EGFP fusion protein in the presence of Ca2+ to increasing concentrations of phenothiazines and structurally related tricyclic anti-depressants was investigated. Dose-response curves for various tricyclic anti-depressants were prepared. Moreover, this assay can serve as a model system for other homogeneous binding assays for pharmaceuticals employing genetically fused binding proteins with reporter proteins and may find applications in the high throughput screening of tricyclic anti-depressants.  相似文献   

12.
The chemical ligation of two unprotected peptides to generate a natural peptidic linkage specifically at the C‐ and N‐termini is a desirable goal in chemical protein synthesis but is challenging because it demands high reactivity and selectivity (chemo‐, regio‐, and stereoselectivity). We report an operationally simple and highly effective chemical peptide ligation involving the ligation of peptides with C‐terminal salicylaldehyde esters to peptides with N‐terminal cysteine/penicillamine. The notable features of this method include its tolerance of steric hinderance from the side groups on either ligating terminus, thereby allowing flexible disconnection at sites that are otherwise difficult to functionalize. In addition, this method can be expanded to selective desulfurization and one‐pot ligation‐desulfurization reactions. The effectiveness of this method was demonstrated by the synthesis of VISTA (216‐311), PD‐1 (192‐288) and Eglin C.  相似文献   

13.
Through parallel studies on peptides containing N(epsilon)-methanesulfonyl-lysine or N(epsilon)-acetyl-lysine, N(epsilon)-methanesulfonyl-lysine as a replacement for N(epsilon)-acetyl-lysine was shown i) not to compromise the binding affinity for a bromodomain, ii) to confer resistance to human HDAC8 and SIRT1 (two distinct protein deacetylases), and iii) to confer only weak inhibition against human HDAC8 and SIRT1. These results suggested N(epsilon)-methanesulfonyl-lysine as a non-hydrolyzable functional surrogate for N(epsilon)-acetyl-lysine.  相似文献   

14.
La3+诱导钙调蛋白与鼠脑组织钙调蛋白亲合蛋白的结合   总被引:1,自引:0,他引:1  
应用固定化钙调蛋白(CaM)亲合色谱法、变性丙烯酰胺电泳(SDS-PAGE)和基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)等方法研究了La3+诱导CaM在大鼠脑匀浆液中的钙调蛋白亲合蛋白(CaMBP)谱以及CaM-CaMBP在模拟细胞环境下结合作用的La3+浓度依赖关系, 并与Ca2+的作用进行了比较. 实验结果表明, (1) La3+参与的CaMBP物种与Ca2+的基本相同. 鉴定了其中含量高且稳定出现的5种CaMBP分别是参与糖酵解反应的6-磷酸果糖激酶和3-磷酸甘油醛脱氢酶、细胞骨架类的微管蛋白和肌动蛋白以及应激反应相关的71000热休克同源蛋白, 表明稀土离子可能参与多种细胞过程; (2) La3+诱导CaM与5种CaMBP结合的浓度依赖曲线因CaMBP物种的不同而存在差别. 热休克同源蛋白、肌动蛋白或微管蛋白对La3+相对敏感, La3+在金属-CaM-CaMBP三元体系中与CaM的结合常数K与Ca2+的相近或稍高; 而6-磷酸果糖激酶和3-磷酸甘油醛脱氢酶体系对La3+的敏感性明显低于Ca2+. 其原因可能在于模拟细胞环境的复杂性以及CaM-CaMBP蛋白质相互作用对金属离子与CaM配位结合的调节.  相似文献   

15.
钙调素 ( Ca M)存在于所有真核细胞生物体内 ,它可与很多天然的生物活性肽结合 ,如 β-内啡肽、胰高血糖素和某些昆虫毒液肽等 [1] .有关 Ca M与多肽相互作用的研究普遍认为 ,对 Ca M有高亲和性的多肽应该具有形成α螺旋结构的显著倾向[2 ] .为进一步确认多肽的主链构象对 Ca M亲和能力的影响 ,我们采用圆二色性光谱和核磁共振波谱分析了荞麦花粉碱性十二肽 BPP-1和它的类似物 BPP-3的结构特征 ,配合多肽对花粉钙调素 ( p Ca M)的结合能力 ,发现肽链的可塑性和 C端的极性是影响多肽与 p Ca M亲和能力的因素 ,而形成 α螺旋结构的倾…  相似文献   

16.
It is well-known that the C=N stretching vibration in acetonitrile is sensitive to solvent. Therefore, we proposed in this contribution to use this vibrational mode to report local environment of a particular amino acid in proteins or local environmental changes upon binding or folding. We have studied the solvent-induced frequency shift of two nitrile-derivatized amino acids, which are, AlaCN and PheCN, in H(2)O and tetrahydrofuran (THF), respectively. Here, THF was used to approximate a protein's hydrophobic interior because of its low dielectric constant. As expected, the C=N stretching vibrations of both AlaCN and PheCN shift as much as approximately 10 cm(-1) toward higher frequency when THF was replaced with H2O, indicative of the sensitivity of this vibration to solvation. To further test the utility of nitrile-derivatized amino acids as probes of the environment within a peptide, we have studied the binding between calmodulin (CaM) and a peptide from the CaM binding domain of skeletal muscle myosin light chain kinase (MLCK(579-595)), which contains a single PheCN. MLCK(579-595) binds to CaM in a helical conformation. When the PheCN was substituted on the polar side of the helix, which was partially exposed to water, the C=N stretching vibration is similar to that of PheCN in water. In constrast, when PheCN is introduced at a site that becomes buried in the interior of the protein, the C=N stretch is similar to that of PheCN in THF. Together, these results suggest that the C=N stretching vibration of nitrile-derivatized amino acids can indeed be used as local internal environmental markers, especially for protein conformational studies.  相似文献   

17.
Many DNA binding proteins utilize one‐dimensional (1D) diffusion along DNA to accelerate their DNA target recognition. Although 1D diffusion of proteins along DNA has been studied for decades, a quantitative understanding is only beginning to emerge and few chemical tools are available to apply 1D diffusion as a design principle. Recently, we discovered that peptides can bind and slide along DNA—even transporting cargo along DNA. Such molecules are known as molecular sleds. Here, to advance our understanding of structure–function relationships governing sequence nonspecific DNA interaction of natural molecular sleds and to explore the potential for controlling sliding activity, we test the DNA binding and sliding activities of chemically modified peptides and analogs, and show that synthetic small molecules can slide on DNA. We found new ways to control molecular sled activity, novel small‐molecule synthetic sleds, and molecular sled activity in N‐methylpyrrole/N‐methylimidazole polyamides that helps explain how these molecules locate rare target sites.  相似文献   

18.
Quantum mechanics/molecular mechanics calculations in tyrosine ammonia lyase (TAL) ruled out the hypothetical Friedel–Crafts (FC) route for ammonia elimination from L ‐tyrosine due to the high energy of FC intermediates. The calculated pathway from the zwitterionic L ‐tyrosine‐binding state (0.0 kcal mol?1) to the product‐binding state ((E)‐coumarate+H2N? MIO; ?24.0 kcal mol?1; MIO=3,5‐dihydro‐5‐methylidene‐4H‐imidazol‐4‐one) involves an intermediate (IS, ?19.9 kcal mol?1), which has a covalent bond between the N atom of the substrate and MIO, as well as two transition states (TS1 and TS2). TS1 (14.4 kcal mol?1) corresponds to a proton transfer from the substrate to the N1 atom of MIO by Tyr300? OH. Thus, a tandem nucleophilic activation of the substrate and electrophilic activation of MIO happens. TS2 (5.2 kcal mol?1) indicates a concerted C? N bond breaking of the N‐MIO intermediate and deprotonation of the pro‐S β position by Tyr60. Calculations elucidate the role of enzymic bases (Tyr60 and Tyr300) and other catalytically relevant residues (Asn203, Arg303, and Asn333, Asn435), which are fully conserved in the amino acid sequences and in 3D structures of all known MIO‐containing ammonia lyases and 2,3‐aminomutases.  相似文献   

19.
Vicinal‐sulfydryl‐containing peptides/proteins (VSPPs) play a crucial role in human pathologies. Fluorescent probes that are capable of detecting intracellular VSPPs in vivo would be useful tools to explore the mechanisms of some diseases. In this study, by regulating the spatial separation of two maleimide groups in a fluorescent dye to match that of two active cysteine residues contained in the conserved amino acid sequence (–CGPC–) of human thioredoxin, two active‐site‐matched fluorescent probes, o‐Dm‐Ac and m‐Dm‐Ac, were developed for real‐time imaging of VSPPs in living cells. As a result, the two probes can rapidly respond to small peptide models and reduced proteins, such as WCGPCK (W‐6), WCGGPCK (W‐7), and WCGGGPCK (W‐8), reduced bovine serum albumin (rBSA), and reduced thioredoxin (rTrx). Moreover, o‐Dm‐Ac displays a higher binding sensitivity with the above‐mentioned peptides and proteins, especially with W‐7 and rTrx. Furthermore, o‐Dm‐Ac was successfully used to rapidly and directly detect VSPPs both in vitro and in living cells. Thus, a novel probe‐design strategy was proposed and the synthesized probe applied successfully in imaging of target proteins in situ.  相似文献   

20.
We present here an efficient alternative to N‐methylation for the purpose of morphing protein‐binding peptides into more serum‐stable and cell‐permeable compounds. This involves the incorporation of a cycloalanine (CyAla) into a peptide in a way that avoids difficult coupling steps. We demonstrate the utility of this chemistry in creating a cell‐permeable derivative of a high‐affinity HIV Rev protein‐binding peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号