首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastic properties of PVDF have been investigated as a function of temperature. The propagation velocity and absorption of longitudinal and transverse ultrasonic waves have been measured at a constant frequency of 2 MHz and temperatures between –20 and 100 °C. Hence, the temperature dependences of storage and loss elastic constants have been obtained for temperatures between –20 and 100 °C. It has been seen that the relaxation behavior is affected from the form of mechanical disturbance. For the longitudinal mode, only one relaxation peak at 42 °C, but for transverse mode three relaxation peaks at 28 °C, 60 °C, and 94 °C have been observed. The results have been compared with the literature values obtained previously for PVDF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2862–2873, 2005  相似文献   

2.
Dynamic loss modulus curves have been determined over a temperature range beginning at liquid nitrogen temperature for poly-α-olefin polymers containing various ring structures, i.e., phenyl, cyclohexyl, cyclopentyl, and naphthyl, in the side chain. Glass transition and appropriate secondary relaxation temperatures were observed for each polymer. Separation of each pendant ring structure from the main backbone chain by successive additions of methylene units results in lower glass-transition temperatures. Comparison of polymers with similar side chains and different ring structures shows that the respective glass-transition temperatures decrease in the order naphthyl > cyclohexyl > phenyl > cyclopentyl. Secondary relaxation peaks were obtained at about ?150°C for polymers containing the cyclohexyl and cyclopentyl rings. A similar peak was observed for the polymer possessing a phenyl ring separated from the main chain backbone by two methylene units. The comparable polymer containing the naphthyl ring structure exhibited a broad secondary relaxation peak centered at ?20°C. The polymers possessing cyclohexyl rings separated from the main chain backbone by one or two methylene units had an additional low temperature peak at ?80°C. The molecular mechanism associated with this relaxation may be related to intramolecular transformations of the cyclohexyl ring between its “chair–chair” conformations.  相似文献   

3.
In the present study, the tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures were investigated by both micro- and macromechanical test methods. In the micromechanical studies, a single fiber fragmentation test was employed for measuring the interfacial shear strength at fiber-polypropylene interface in the temperature range from 23 °C to 90 °C. The results show that interfacial shear strength decreases with increasing testing temperature. In the macromechanical studies, experimental results show that the elastic modulus of polypropylene and transverse elastic modulus of composites are sensitive to the testing temperature. The weakened fiber-polypropylene interface due to elevated temperatures led to the vanishing of “knee” in transverse tensile stress-strain curves. A function was proposed to evaluate the dependence of the elastic modulus of quasi-unidirectional glass fiber/polypropylene composites on the testing temperatures and tested against experimental data. Tensile failure mechanisms of composites were demonstrated to evolve with the testing temperature.  相似文献   

4.
Dynamic mechanical measurements on ultrahigh modulus polyoxymethylene have been undertaken over the temperature range ?150 to 20°C. Measurements of the longitudinal crystal modulus have also been made by studying changes in the (009) reflection with load, over a similar range of temperatures. The dynamic Young's modulus at 5 Hz reaches a value at low temperatures of 64.5 GPa for the most highly oriented sample. The crystal modulus at low temperatures is 105 GPa, which is almost twice the previously reported room-temperature value.  相似文献   

5.
The repeated heating and cooling cycles under sinusoidal deformation have been investigated on nylon 6 fibers. The fibers zone-drawn twice at high temperatures were used, which have a crystallinity of 52.2% and a birefringence of 59.4×10?3. The heating and cooling cycle was performed twice at a frequency of 110 Hz over a temperature range from 0°C to 180°C and 190°C. The crystallinity and birefringence of the treated fiber were 51.7% and 60.7×10?3, respectively, indicating almost no changes in molecular orientation and crystallinity. However, the dynamic modulus, E′, increased steadily over whole temperature range measured. Finally, the E′ value reached 21 GPa at room temperature and 10 GPa ever at 180°C. The elongation of fiber after two cycles was only about 5%. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Glass transition temperature and tan delta (the ratio of loss modulus to storage modulus) are indispensable parameters for determining appropriate application range of ETFE foils. In this study, ETFE foils in terms of specimen number, material direction and thickness were investigated with dynamic mechanical analysis (DMA) over a temperature range of -70-100 °C at frequencies of 0.1, 1, and 10 Hz. Glass transition temperatures were obtained with storage modulus, loss modulus and tan delta curves. It is found that frequency effect on glass transition temperature was proportional and that frequency effect was more significant than material direction effect. Moreover, a comparison study showed that elastic modulus determined with quasi-static experiments was greater than storage modulus calculated with dynamic mechanical experiments. To propose suitable glass transition temperature ranges for engineering application, an approach to determine confidence interval based on statistical analysis was employed. The resulting intervals with confidence coefficient of 95% were 31.2–32.7 °C, 60.5–66.4 °C and 79.6–83.3 °C for storage modulus, loss modulus and tan delta, respectively. In general, this study could provide useful observations and values for evaluating dynamic mechanical properties of ETFE foils.  相似文献   

7.
UHMWPE viscoelastic fibers show great interest as reinforcement within composites and especially when used in SRPs (Self-Reinforced Polymers). They provide ductility, lightness and recyclability, benefits that glass or carbon fibers cannot provide. It is, therefore, necessary to increase knowledge about the behavior of UHMWPE fibers. Before the thermomechanical characterization of these yarns, an experimental protocol is proposed, validated and it supplements the existing standard. Monotonous, load-unload and creep tensile tests were carried out on Doyentrontex® yarns. Temperature and strain rate dependencies were observed. A time-temperature superposition is used to reconstruct the evolutions of modulus at 0.5%, maximum strength, and strain at break at 23 °C over a wide range of strain rates. The behavior of the yarns studied appears to be complex. Indeed, at low temperatures, a hyperelastic type of behavior, combined with plasticity, predominates whereas a more elasto-viscoplastic one emerges at 100 °C. From creep tests, a time-temperature-stress level superposition leads to the reconstruction of the yarns creep behavior over a long period at the reference temperature 23 °C and the reference stress level, which is 40% of the stress at break in tensile tests at any given test temperature.  相似文献   

8.
The dielectric properties of poly(vinylidene fluoride) have been studied in the frequency range 10 Hz to 100 kHz at temperatures between ?196 and 150°C. Three dielectric relaxations were observed: the α relaxation occurred near 130°C, the β near 0°C, and the γ near ?30°C at 100 kHz. In the α relaxation the magnitude of loss peak and the relaxation times increased not only with increasing lamellar thickness, but also with decrease of crystal defects in the crystalline regions. In the light of the above results, the α relaxation was attributed to the molecular motion in the crystalline regions which was related to the lamellar thickness and crystal defects in the crystalline phase. In the β relaxation, the magnitude of the loss peak increased with the amount of amorphous material. The relaxation times were independent of the crystal structure and the degree of crystallinity, but increased slightly with orientation of the molecular chains by drawing. The β relaxation was ascribed to the micro-Brownian motions of main chains in the amorphous regions. The Arrhenius plots were of the so-called WLF type, and the “freezing point” of the molecular motion was about ?80°C. The Cole-Cole distribution parameter of the relaxation time α increased almost linearly with decreasing temperature in the temperature range of the experiment. The γ relaxation was attributed to local molecular motions in the amorphous regions.  相似文献   

9.
Qi  Xiaofei  Yan  Ning  Li  Hongyan  Zhao  Yu  Liu  Peijin  Yan  Qilong 《Cellulose (London, England)》2022,29(3):1307-1314

We performed dynamic mechanical analysis (DMA) on nitrocellulose (NC) plasticized by an insensitive plasticizer N-butyl-N-(2-nitroxy-ethyl)nitramine (Bu-NENA). NC/Bu-NENA blend shows two mechanical relaxation processes in the temperature ranges of???50 to???40 °C and 30?~?40 °C, and their variations with deformation frequencies were studied. To explore further the effect of temperature on relaxation, the binary mixture model of NC/Bu-NENA was constructed, and molecular dynamic simulations were conducted. The simulated mean square displacements (MSD) show abrupt increase in the temperature range of???50 to???40 °C and 30?~?40 °C, which are consistent with those of the two relaxation processes observed in the DMA curves. Moreover, the free volume (Vfree) and torsion energy obtained from molecular dynamic simulations exhibit distinct increase at the temperature above 30 °C and???50 °C respectively, reflecting the sudden enhancements on the mobility of polymer chain elements and the rotation of molecular bonds. Furthermore, the radial distribution function (RDF) associated with the intermolecular interactions reveals that the intensities of both hydrogen bond and van der Waals forces decrease with the increase of temperature, which is responsible for the decrease of storage modulus at high temperature. These computational and experimental studies reveal guidance to strengthening the NC base propellants in broad temperature range.

  相似文献   

10.
Silica coatings filled with nanoscaled inorganic fullerene-like tungsten disulphide (IF-WS2) have been prepared through a sol–gel process on stainless steel substrates, and the structure and mechanical properties have been investigated. The precursor was prepared from a mixture of colloidal silica, 3-glycidoxypropyltrimethoxysilane (GLYMO), water and ethanol, adjusted to pH 4 with HNO3. In this solution WS2 is dispersed and in some cases immediately before coating ethylenediamine (ED) is added. The stainless steel substrates are dip-coated, dried in air and heat-treated in the temperature range of either 150–360 °C in air or up to 900 °C in vacuum. The solidification process is followed by differential thermal analysis (DTA). The resulting brown coloured coatings have a thickness of 1.5–4 μm. Scanning electron microscopy investigations (SEM) show that the WS2 nanoparticles are embedded as small aggregates in a hybrid silica matrix. X-ray diffraction (XRD) measurements prove that most of the tungsten disulphide embedded in the matrix can be protected against oxidation even after curing the samples at temperatures up to 900 °C. Hardness and modulus of the hybrid silica films were measured through an instrumented indentation test. Increasing the temperature of the heat treatment yields an increase of hardness from 0.3 to 1 GPa and of modulus from 3 to 17 GPa. The amount of up to 10 wt.% WS2 in the coatings has no remarkable influence on hardness and modulus of the samples.  相似文献   

11.
In this study, we present a method to determine the large-strain tensile behaviour of polymers at low temperatures using a purpose-built temperature chamber made of polycarbonate (PC). This chamber allows for several cameras during testing. In our case, two digital cameras were utilized to monitor the two perpendicular surfaces of the test sample. Subsequently, the pictures were analysed with digital image correlation (DIC) software to determine the strain field on the surface of the specimen. In addition, a thermal camera was used to monitor self-heating during loading. It is demonstrated that the PC chamber does not influence the stress-strain curve as determined by DIC. Applying this set-up, a semi-crystalline cross-linked low-density polyethylene (XLPE) under quasi-static tensile loading has been successfully analysed using DIC at four different temperatures (25 °C, 0 °C, −15 °C, −30 °C). At the lower temperatures, the conventional method of applying a spray-paint speckle failed due to embrittlement and cracking of the spray-paint speckle when the tensile specimen deformed. An alternative method was developed utilising white grease with a black powder added as contrast. The results show a strong increase in both the Young’s modulus and the flow stress for decreasing temperatures within the experimental range. We also observe that although the XLPE material is practically incompressible at room temperature, the volumetric strains reach a value of about 0.1 at the lower temperatures.  相似文献   

12.
A comparison between structure and mechanical properties of dc sputtered C–Ni and C–Ti nanocomposite thin films has been made in the growth temperature range of 25–800 °C. C–Ni films undergo morphological and phase change at 400 °C deposition temperature, while the C–Ti films possess the same phase state and morphological character in the whole range of deposition temperatures. Despite the structural differences the dependence of hardness (H) and elastic modulus (E) on the deposition temperature shows very similar behavior. The same character of the hardness and modulus curves is mostly influenced by the structure and the morphology of the carbon matrix. The difference in absolute value between the H and E curves of C–Ni and C–Ti could be related to the C-metal bonds, chemical stability and mechanical properties of the corresponding carbide phase.  相似文献   

13.
Tensile stress–strain and stress relaxation properties of 1100 equivalent weight Nafion have been measured from 23 to 120 °C at 0–100% relative humidity. At room temperature, the elastic modulus of Nafion decreases with water activity. At 90 °C, the elastic modulus goes through a maximum at a water activity of ~ 0.3. At temperatures ≥90 °C, hydrated membranes are stiffer than dry membranes. Stress‐relaxation was found to have two very different rates depending on strain, temperature, and water content. At high temperature, low water activity, and small strain, the stress relaxation displays a maximum relaxation time with stress approaching zero after 103–104 s. Water absorption slows down stress‐relaxation rates. At high water activity, the maximum stress relaxation time was >105 s at all temperatures. No maximum relaxation time was seen at T ≤ 50 °C. Increasing the applied strain also resulted in no observed upper limit to the stress relaxation time. The results suggest that temperature, absorbed water, and imposed strain alter the microstructure of Nafion inducing ordering transitions; ordered microstructure increases the elastic modulus and results in a stress relaxation time of >105 s. Loss of microphase order reduces the elastic modulus and results in a maximum stress relaxation time of 103–104 s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 11–24, 2009.  相似文献   

14.
Abstract

The flow behavior, dynamic viscoelasticity, and optical rotation of an aqueous solution of amylose were measured using a rheogoniometer and a polarimeter, respectively. The amylose solutions showed shear-thinning behavior at a concentration of 1.2%, but plastic behavior above 1.4% at 25 °C. With increasing amylose concentrations the viscosity decreased rapidly with increasing temperature from 20 to 25, 30, and 35 °C. These latter temperatures are estimated to be first transition temperatures at the respective concentrations. Viscosities were scarcely changed until temperatures reached 70, 90, and 90 °C, which were estimated to be second transition temperatures, for 1.2, 1.4, and 1.6% solutions, respectively. Gelation occurred at a concentration of 1.2% at room temperature (2.5 °C). The dynamic modulus of amylose increased gradually with increasing temperature from 20 to 30 °C and kept a constant value until the temperature reached 65, 75, and 80 °C for 1.0, 1.2 and 1.4% solutions, respectively, which were estimated to be transition temperatures, then dynamic modulus decreased rapidly. The dynamic modulus of amylose stayed at a very low value with addition of urea (4.0 M). The optical rotation of amylose solution (1.0%) increased a little with deceasing temperature up to 25 °C, then it increased rapidly with further decrease of the temperature. Possible mode of intra- and intermolecular hydrogen bonding within and between amylose molecules were proposed.  相似文献   

15.
Multipoint covalent bonding of glucose oxidase (EC 1.1.3.4) to hydrophilic natural polymer dextran and optimization of procedures to obtain, with enhanced temperature and pH stabilities, were studied. Purified enzyme was conjugated with various molecular weight dextrans (17.5, 75, and188 kD) in a ratio of 20:1, 10:1, 1:1, 1:5, 1:10, 1:15, and 1:20. After 1 h of incubation at pH 7, the activities of purified enzyme and conjugates were determined at different temperatures (25°C, 30°C, 35°C, 40°C, 50°C, 60°C, 70°C, and 80°C), and the results were evaluated for thermal resistance. Increases in temperature from 25°C to 50°C did not change the activities of the conjugates. The conjugate, which was prepared with 75 kDa dextran in a molar ratio of 1:5, showed the highest thermal resistance and even the activity still remains at 80°C at pH 7.0. This conjugate also displayed activity in a wide pH range (pH 4.0–7.0) at high temperatures. Conjugate, which was synthesized with 75 kDa dextran in a molar ratio of 1:5, appears to be feasible and useful for biotechnological applications.  相似文献   

16.
The SO2 poisoning of Pt nanoparticle (n-Pt) modified glassy carbon (GC/n-Pt) electrode and the recovery of its activity for the oxygen reduction reaction (ORR) were studied using cyclic voltammetry at ambient (25 °C) and elevated (70 °C) temperatures. Recovery of the GC/n-Pt electrode by cycling the potential within the ORR range (1.0 to 0.2 V (standard hydrogen electrode)) in 0.1 M H2SO4 was not effective at 25 °C, but at 70 °C the onset potential of the ORR was almost the same as that at the fresh GC/n-Pt electrode. For the two different temperatures used here, the recovery on cycling the potential between 0.4 and 1.7 V was efficient. However, the number of cycles and the amount of charge required for the recovery at 70 °C were the smallest, which is of great interest for the proton exchange membrane fuel cell performance. The recovery using such a wide potential range at 70 °C resulted in an enhancement of the electrocatalytic activity of the GC/n-Pt electrode over a non-poisoned (bare) GC/n-Pt electrode.  相似文献   

17.
Carbon/glass hybrid composite (CGHC) laminates are some of the most promising composites for lightweight applications. Sometimes these laminates are used in warm environment, such as aircraft frame structures, and this may affect their performance. In order to investigate this issue, the present research aims to study the effect of temperatures on the impact behavior and pseudo-ductile behaviour of CGHC in presence of different types of thermosets “epoxy” and thermoplastic “acrylic poly-methyl methacrylate-PMMA”. The experiments were started with making of CGHC laminates from different stacking sequences of unidirectional carbon and woven glass fibre layers, using a vacuum-assisted resin transfer method followed by curing treatment. In addition to CGHC laminates, four other neat batches (Carbon/epoxy, Carbon/PMMA, Glass/epoxy, Glass/PMMA) were prepared for comparison. The low velocity impact behaviour of the fabricated panels was evaluated at high temperatures (60 °C and 80 °C) according to ISO 6603-2 standard, using drop tower, while pseudo-ductile behaviour and ductility index (DI) of the specimens were estimated based on the measured total energy and elastic energy. Also, the low-velocity impact response was modeled mathematically based on a modified energy-balance model to predict the absorbed energies. Finally, the failure mechanisms were examined using optical microscope to determine the influence of these damage growth on DI of the composites under different temperatures. The results showed that the impact energy response of both hybrid composites i.e. epoxy and PMMA was stable even as the temperature rose, however, carbon/glass/PMMA exhibited better performance compared with carbon/glass/epoxy with an increase in impact energy response estimated at 50% (25 °C) and 53% (80 °C). Also, the pseudo-ductile phenomenon was strongly evident, which facilitates the predictablility of failure.  相似文献   

18.
In this paper, we report a systematic study of the dielectric relaxation spectroscopy of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) polyester which has potential applications as a “green” dielectric material in electronic devices. The dielectric spectra was measured over a wide frequency range (100  107 Hz) from ?100 to 60 °C. A glass and a sub-glass transition relaxations were observed in the dielectric spectra of PHBHHx. In addition, a nearly constant loss behavior was found by analyzing the dielectric and conductivity spectra.  相似文献   

19.
The 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated stable free radical polymerization of styrene in miniemulsion at 100 °C is demonstrated. Although this temperature is 20–35 °C lower than typical temperatures used for TEMPO‐mediated polymerizations, reasonable reaction rates were achieved by the addition of ascorbic acid or a free radical initiator. More importantly, the living character of the chains was preserved; the degree of polymer “livingness” was comparable to polymerizations conducted at 135 °C. Polydispersities were broader than that observed in well‐controlled systems, ranging from ~1.4–1.6, and consistent with expectations for systems having a low activation rate. The results are significant for two reasons. They will facilitate TEMPO‐mediated minemulsion polymerizations in nonpressurized (or minimally pressurized) reactors, and they reveal the potential to expand the traditional temperature range of TEMPO and possibly other nitroxides in bulk, solution, and miniemulsion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 232–242, 2006  相似文献   

20.
In this work, a new method is proposed to meet the challenge of preparing new catalysts with cascade/non-cascade switching catalytic property. Inspired from “soft” characteristics and divisional isolation function in natural biological systems, this objective was accomplished by developing a new class of hydrogels made of two unique functional layers with different temperature responses where each may self-govern coupled processes at a specific temperature. This hydrogel polymer reactor exhibited almost no catalytic activity at low-temperature range (<37 °C) as both channels of bilayer hydrogel polymer catalyst were closed. At modest temperatures (between 37 °C and 50 °C), the first step of the tandem reaction (the hydrolysis of p-nitrophenyl acetate (NPA)) showed significant reactivity that arises from the relaxing of the weak polymer complexes in the hydrogel layer. This enabled NPA the access to the acidic catalytic active center of the hydrogel. At range of higher temperatures (>50 °C), the hydrogel catalytic polymer reactor further exhibited significant efficiency towards the hydrolysis reaction of NPA as well as the reduction of the intermediate product p-nitrophenol (NP). This mainly resulted from the opening of both the weak polymer complexes and the stronger polymer complexes hydrogel layers, allowing entrance to both the acidic catalytic active center and the metal nanoparticles active center. As a result, the novel hydrogel polymer reactor could be used to control cascade/non-cascade catalysis reactions. This new protocol enables efficient control of switchable tandem reactions, inspiring for difficulty to control tandem catalytic reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号