首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanostructured Bi(2-x)Cu(x)S(3) (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) thermoelectric polycrystals were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS) methods. The effect of Cu content on the microstructure and thermoelectric property of Bi(2-x)Cu(x)S(3) bulk samples was investigated. It was found that the subtle tailoring of Cu content could reduce both the electrical resistivity and the thermal conductivity at the same time, and consequently enhancing the thermoelectric property. A low electrical resistivity of 1.34 × 10(-4)Ω m(-1) and a low thermal conductivity of 0.52 W m(-1) K(-1) were obtained for the Bi(1.995)Cu(0.005)S(3) sample at 573 K. The low thermal conductivity is supposed to be due to the nanoscopic Cu-rich regions embedded in the host matrix. A peak ZT value of 0.34 at 573 K was achieved for the Bi(1.995)Cu(0.005)S(3) composition, which is the highest value in the Bi(2)S(3) system reported so far.  相似文献   

2.
Investigations in the ternary RE-Mn-Bi systems where RE is an early rare earth element have revealed the existence of the polybismuthides RE3MnBi5 (RE = La-Nd), previously known only for the Ce member, and the new compound Sm2Mn3Bi6. Their structures were determined from single-crystal X-ray diffraction data. The RE3MnBi5 compounds adopt the hexagonal inverse Hf5Cu3Sn-type structure (Pearson symbol hP18, space group P63/mcm, a = 9.7139(11)-9.5438(16) A, c = 6.4883(7)-6.4089(11) A for RE = La-Nd), containing chains of face-sharing Mn-centered octahedra. Sm2Mn3Bi6 adopts a new monoclinic structure type (Pearson symbol mP22, space group P21/m, a = 10.3917(8) A, b = 4.4557(3) A, c = 13.2793(10) A, beta = 108.0100(10) degrees ) in which the Mn centers are coordinated by Bi atoms in diverse geometries (distorted octahedral, trigonal bipyramidal, and distorted tetrahedral (seesaw)) and participate in extensive metal-metal bonding in the form of chains of Mn3 clusters. Homoatomic bonding interactions involving nominally anionic Bi atoms are manifested as one-dimensional Bi chains in RE3MnBi5 and as four-atom-wide Bi ribbons in Sm2Mn3Bi6. Electrical resistivity measurements on single crystals revealed metallic behavior with prominent transitions near 40 K for RE3MnBi5 and 50 K for Sm2Mn3Bi6. Magnetic susceptibility measurements showed that Pr3MnBi5 undergoes magnetic ordering near 25 K.  相似文献   

3.
A simple one-step hydrothermal method for large-scale synthesis of ultralong single-crystalline Bi2S3 nanowires was reported, and the nanowires were comprehensively characterized. The diameters of the nanowires are about 60 nm, and their lengths range from tens of microns to several millimeters. The structure of the nanowires was determined to be of the orthorhombic phase, the growth direction was along [001], and the growth mechanism was investigated based on extensive high-resolution transmission electron microscopy observations. Optical absorption experiments revealed that the Bi2S3 nanowires are narrow-band semiconductors with a band gap E(g) approximately 1.33 eV. Electrical transport measurements on individual nanowires gave a resistivity of about 1.2 ohms cm and an emission current of 3.5 microA at a bias field of 35 V/microm. This current corresponds to a current density of about 10(5) A/cm2, which makes the Bi2S3 nanowire a potential candidate for applications in field-emission electronic devices.  相似文献   

4.
Bi(2)Sr(3)Co(2)O(y) thin films are prepared on SrTiO(3) (100), (110) and (111) single crystal substrates using the sol-gel method. All the thin films are c-axis oriented regardless of the orientation of the substrate suggesting self-assembled c-axis orientation, and X-ray photoelectron spectroscopy results give evidence of coexistence of Co(3+) and Co(2+) ions in the derived films. Transmission electronic microscopy observations reveal that all samples are c-axis oriented with no obvious differences for different samples, and the c-axis lattice constant is determined as ~15 ? suggesting the misfit structure. A phenomenological thermodynamic phase diagram for self-assembled c-axis orientation is established for misfit cobaltate-based films using chemical solution deposition. All samples behave like semiconductors due to the coexistence of Co(3+)/Co(2+) ions, and the resistivity at 350 K is ~47, 39 and 17 mΩ cm for the thin films on SrTiO(3) (100), (110) and (111), respectively, whereas the Seebeck coefficient at 300 K is 97, 89 and 77 μV K(-1). The successful attainment of Bi(2)Sr(3)Co(2)O(y) thin films with self-assembled c-axis orientation will provide an effective prototype for investigation of growth mechanisms in complex oxide thin films with a misfit structure.  相似文献   

5.
A new noncentrosymmetric (NCS) and polar material containing two lone-pair cations, Bi(3+) and I(5+), and exhibiting an Aurivillius-type (Bi(2)O(2))(2+) layer has been synthesized and structurally characterized. The material, BiO(IO(3)), exhibits strong second-harmonic generation (SHG), ~12.5 × KDP (or ~500 × α-SiO(2)), using 1064 nm radiation, and is found in the NCS polar orthorhombic space group Pca2(1) (No. 29). The structure consists of (Bi(2)O(2))(2+) cationic layers that are connected to (IO(3))(-) anions. The macroscopic polarity, observed along the c-axis direction, may be attributed to the alignment of the IO(3) polyhedra. In addition to the crystal structure and SHG measurements, polarization and piezoelectric measurements were performed, as well as electronic structure analysis.  相似文献   

6.
Recently, methyl formate, glycolaldehyde, and acetic acid have been detected in the Interstellar Medium, ISM. The rate constants, α(e), for dissociative electron-ion recombination of protonated gycolaldehyde, (HOCH(2)CHO)H(+), and protonated methyl formate, (HCOOCH(3))H(+), have been determined at 300 K in a variable temperature flowing afterglow using a Langmuir probe to obtain the electron density. The recombination rate constants at 300 K are 3.2 × 10(-7) cm(3) s(-1) for protonated methyl formate and 7.5 × 10(-7) cm(3) s(-1) for protonated glycolaldehyde. The recombination rate constant of protonated acetic acid could not be directly measured, but it appears to have a rate constant, α(e), on the 10(-7) cm(3) s(-1) scale. Several high- and low-temperature measurements for protonated methyl formate were made. In addition, an α(e) measurement at 220 K for protonated glycolaldehyde was performed. The astrochemical implications of the rates of recombination, α(e), and protonation routes are discussed.  相似文献   

7.
Reactions between Mg(+) and O(3), O(2), N(2), CO(2) and N(2)O were studied using the pulsed laser photo-dissociation at 193 nm of Mg(C(5)H(7)O(2))(2) vapour, followed by time-resolved laser-induced fluorescence of Mg(+) at 279.6 nm (Mg(+)(3(2)P(3/2)-3(2)S(1/2))). The rate coefficient for the reaction Mg(+) + O(3) is at the Langevin capture rate coefficient and independent of temperature, k(190-340 K) = (1.17 ± 0.19) × 10(-9) cm(3) molecule(-1) s(-1) (1σ error). The reaction MgO(+) + O(3) is also fast, k(295 K) = (8.5 ± 1.5) × 10(-10) cm(3) molecule(-1) s(-1), and produces Mg(+) + 2O(2) with a branching ratio of (0.35 ± 0.21), the major channel forming MgO(2)(+) + O(2). Rate data for Mg(+) recombination reactions yielded the following low-pressure limiting rate coefficients: k(Mg(+) + N(2)) = 2.7 × 10(-31) (T/300 K)(-1.88); k(Mg(+) + O(2)) = 4.1 × 10(-31) (T/300 K)(-1.65); k(Mg(+) + CO(2)) = 7.3 × 10(-30) (T/300 K)(-1.59); k(Mg(+) + N(2)O) = 1.9 × 10(-30) (T/300 K)(-2.51) cm(6) molecule(-2) s(-1), with 1σ errors of ±15%. Reactions involving molecular Mg-containing ions were then studied at 295 K by the pulsed laser ablation of a magnesite target in a fast flow tube, with mass spectrometric detection. Rate coefficients for the following ligand-switching reactions were measured: k(Mg(+)·CO(2) + H(2)O → Mg(+)·H(2)O + CO(2)) = (5.1 ± 0.9) × 10(-11); k(MgO(2)(+) + H(2)O → Mg(+)·H(2)O + O(2)) = (1.9 ± 0.6) × 10(-11); k(Mg(+)·N(2) + O(2)→ Mg(+)·O(2) + N(2)) = (3.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). Low-pressure limiting rate coefficients were obtained for the following recombination reactions in He: k(MgO(2)(+) + O(2)) = 9.0 × 10(-30) (T/300 K)(-3.80); k(Mg(+)·CO(2) + CO(2)) = 2.3 × 10(-29) (T/300 K)(-5.08); k(Mg(+)·H(2)O + H(2)O) = 3.0 × 10(-28) (T/300 K)(-3.96); k(MgO(2)(+) + N(2)) = 4.7 × 10(-30) (T/300 K)(-3.75); k(MgO(2)(+) + CO(2)) = 6.6 × 10(-29) (T/300 K)(-4.18); k(Mg(+)·H(2)O + O(2)) = 1.2 × 10(-27) (T/300 K)(-4.13) cm(6) molecule(-2) s(-1). The implications of these results for magnesium ion chemistry in the atmosphere are discussed.  相似文献   

8.
Single crystals of a new compound, Ce2Rh3(Pb,Bi)5, have been grown via a flux-growth technique using molten Pb as a solvent. The compound has been characterized by single crystal X-ray diffraction and found to be of the orthorhombic Y2Rh3Sn5 structure type [Cmc21 (No. 36), Z=4] with lattice parameters a=4.5980(2), b=27.1000(17) and c=7.4310(4) Å, with V=925.95(9) Å3. Ce2Rh3(Pb,Bi)5 has a complex crystal structure containing Ce atoms encased in Rh-X (X=Pb/Bi) pentagonal and octagonal channels in [100], with polyanions similar to those found in Ce2Au3In5 and Yb2Pt3Sn5. Magnetization measurements find that Ce2Rh3(Pb,Bi)5 is a quasi-two-dimensional system, where the Ce moments are spatially well-localized. Heat capacity measurements show a transition at the Néel temperature of 1.5 K. Evidence for Fermi surface nesting is found in electrical resistivity measurements, and we argue that Ce2Rh3(Pb,Bi)5 is very near a metal-insulator transition in zero field.  相似文献   

9.
The quaternary K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) were discovered from reactions involving K(2)Se, Bi(2)Se(3), Sn, and Se. The single crystal structures reveal that K(x)Sn(6-2x)Bi(2+x)Se(9) is isostructural to the mineral heyrovskyite, Pb(6)Bi(2)S(9), crystallizing in the space group Cmcm with a = 4.2096(4) A, b = 14.006(1) A, and c = 32.451(3) A while KSn(5)Bi(5)Se(13) adopts a novel monoclinic structure type (C2/m, a = 13.879(4) A, b = 4.205(1) A, c = 23.363(6) A, beta = 99.012(4) degrees ). These compounds formally belong to the lillianite homologous series xPbS.Bi(2)S(3), whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn(5)Bi(5)Se(13). In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) are reported.  相似文献   

10.
Single crystal and bulk powder samples of the quaternary lanthanum copper oxysulfides La5Cu6.33O4S7 and La5Cu6O4S7 have been prepared by means of high-temperature sealed-tube reactions and spark plasma sintering, respectively. In the structure of La 5Cu6.33O4S7, Cu atoms tie together the fluorite-like (2)infinity[La5O4S(5+)] and antifluorite-like (2) infinity[Cu6S6(5-)] layers of La5Cu6O4S7. The optical band gap, E g, of 2.0 eV was deduced from both diffuse reflectance spectra on a bulk sample of La5Cu6O4S7 and for the (010) crystal face of a La 5Cu6.33O4S7 single crystal. Transport measurements at 298 K on a bulk sample of La 5Cu 6O 4S 7 indicated p-type metallic electrical conduction with sigma electrical =2.18 S cm(-1), whereas measurements on a La 5Cu6.33O4S7 single crystal led to sigma electrical =4.5 10(-3) S cm(-1) along [100] and to semiconducting behavior. In going from La 5Cu6O4S7 to La5Cu6.33O4S7, the disruption of the (2)infinity[Cu6S6(5-)] layer and the decrease in the overall Cu(2+)(3d(9)) concentration lead to a significant decrease in the electrical conductivity.  相似文献   

11.
The Eu? Bi system contains the phases Eu5Bi3, Eu4Bi3 and Eu11Bi10. The structure types of these phases have been determined by powder X-ray diffraction. Crystals of Eu4Bi3 (cubic, space group I4 3d; a = 9.920 Å, Z = 4, T = 130 K, R1/wR2 = 4.86/10.84%) were obtained in low yield by reaction of Eu, Mn, and Bi in the ratio 14:1:11 in a closed niobium tube (heating rate 30°C/h; reaction at 1050°C for 300 h, cooling rate 100°C/h). The crystal structure consists of distorted octahedra made up of six Bi coordinated to a central Eu atom. Eu is also coordinated to a three other Eu atoms and forms a three-dimensional network composed of interconnected rings. The Bi atoms are coordinated to eight Eu atoms. High yields of Eu4Bi3 can be prepared by reacting stoichiometric amount of the elements in a sealed tantalum tube at 1100°C for 24 h. Temperature dependent magnetic susceptibility is consistent with antiferromagnetic behavior with an ordering temperature of 18 K. The data could be fit with the Curie-Weiss law and a moment of 7.38 μB/Eu is obtained, consistent with all Eu atoms being Eu11. Temperature dependent resistivity indicates that Eu4Bi3 is a metal with a room temperature resistance of 1.3 Ωcm.  相似文献   

12.
The high-temperature rate constants of the reactions NCN + NO and NCN + NO(2) have been directly measured behind shock waves under pseudo-first-order conditions. NCN has been generated by the pyrolysis of cyanogen azide (NCN(3)) and quantitatively detected by sensitive difference amplification laser absorption spectroscopy at a wavelength of 329.1302 nm. The NCN(3) decomposition initially yields electronically excited (1)NCN radicals, which are subsequently transformed to the triplet ground state by collision-induced intersystem crossing (CIISC). CIISC efficiencies were found to increase in the order of Ar < NO(2) < NO as the collision gases. The rate constants of the NCN + NO/NO(2) reactions can be expressed as k(NCN+NO)/(cm(3) mol(-1)s(-1)) = 1.9 × 10(12) exp[-26.3 (kJ/mol)/RT] (±7%,ΔE(a) = ± 1.6 kJ/mol, 764 K < T < 1944 K) and k(NCN+NO(2))/(cm(3) mol(-1)s(-1)) = 4.7 × 10(12) exp[-38.0(kJ/mol)/RT] (±19%,ΔE(a) = ± 3.8 kJ/mol, 704 K < T < 1659 K). In striking contrast to reported low-temperature measurements, which are dominated by recombination processes, both reaction rates show a positive temperature dependence and are independent of the total density (1.7 × 10(-6) mol/cm(3) < ρ < 7.6 × 10(-6) mol/cm(3)). For both reactions, the minima of the total rate constants occur at temperatures below 700 K, showing that, at combustion-relevant temperatures, the overall reactions are dominated by direct or indirect abstraction pathways according to NCN + NO → CN + N(2)O and NCN + NO(2) → NCNO + NO.  相似文献   

13.
A new intermetallic compound, the first to be structurally identified in the Cu?Bi binary system, is reported. This compound is accessed by high‐pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu11Bi7 is a unique variation of the NiAs structure type. Temperature‐dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at Tc=1.36 K. Density functional theory calculations further demonstrate that Cu11Bi7 can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight the ability of high‐pressure syntheses to allow for inroads into heretofore‐undiscovered intermetallic systems for which no thermodynamically stable binaries are known.  相似文献   

14.
Several Bi(III) complexes are used in medicine as drugs. Bi(DO3A-Bu) has recently been proposed as a nonionic contrast agent in X-ray imaging (H(3)DO3A-Bu = 10-[2,3-dihydroxy-(1-hydroxymethyl)propyl]-1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid). The solution equilibria and NMR structure and dynamics of Bi(DO3A-Bu) and of the similar Bi(DOTA)(-) have been investigated (H(4)DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The stability constants were determined with the study of the competition equilibria between Br(-) ions and the ligands DOTA or DO3A-Bu for the Bi(III) by spectrophotometry. The stability constants, obtained for Bi(DOTA)(-) and Bi(DO3A-Bu), are very high, log K = 30.3 and 26.8, respectively. Potentiometric titrations indicated the dissociation of one of the protons among the three alcoholic OH groups in Bi(DO3A-Bu). The dissociation constant is log K = 7.53 (0.09) indicating that at physiological pH about 50% of the species possess -1 charge. It was shown by (1)H and (13)C NMR spectroscopy that the OH group attached to the middle carbon atom of the "butriol" side chain is coordinated to the Bi(III) and starts to deprotonate at pH > 5.5. The crystal structure of NaBi(DOTA).H(2)O shows an octacoordinated arrangement of the donor atoms around the Bi(III), with no water in the inner sphere. The crystals belong to the centrosymmetric space group C2/c. The temperature dependent (1)H and (13)C NMR spectra indicate that both Bi(DOTA)(-) and Bi(DO3A-Bu)(-) complexes are fluxional. For Bi(DOTA), the Delta(deltadeltadeltadelta) right harpoon over left harpoon Lambda(lambdalambdalambdalambda) fluxionality was identified, and on the basis of the activation parameters, a synchronous motion was suggested for the fluxional motion resulting in the change of ring conformation and of the helicity of the complex. The transition state is supposed to be more symmetrical than the initial state. The deprotonated Bi(DO3A-Bu) has a highly asymmetric NMR structure in solution, and its fluxional motion is slower than that of Bi(DOTA)(-).  相似文献   

15.
The electron attachment rate constant to nitric acid (HNO(3)) has been measured in a flowing afterglow-Langmuir probe (FALP) apparatus at 300 and 500 K using three independent methods: the traditional FALP technique of monitoring electron depletion, "one-gas" VENDAMS (variable electron and neutral density attachment mass spectrometry), and "two-gas" VENDAMS. The three measurements are in agreement with a 300 K weighted average of 1.4 ± 0.3 × 10(-7) cm(3) s(-1), 2 to 10 times higher than previously reported values. Attachment is primarily dissociative yielding NO(2)(-) as previously reported, but for the first time a small endothermic channel to produce OH(-) was also observed at 500 K. From the one-gas VENDAMS data, associative attachment to the OH produced in the primary attachment was found to occur with an effective two body rate constant of 1.2±(0.7) (3)×10(-11) cm(3) s(-1) at 300 K, the first reported rate constant for this radical species. Finally, ion-ion neutralization rate constants of NO(2)(-) and NO(3)(-) with Ar(+) were determined to be 5.2±(2.5) (1.5) × 10(-8) and 4.5 ± 2.5 × 10(-8) cm(3) s(-1) at 300 K, respectively.  相似文献   

16.
Glasses with composition 15Li(2)O-15K(2)O-xBi(2)O(3)-(65 - x)-B(2)O(3)/5V(2)O(5) (3 ≤ x ≤ 15) have been prepared by the conventional melt quench technique. The electron paramagnetic resonance spectra of VO(2+) in these glasses have been recorded in the X-band frequency (≈9.3 GHz) at room temperature. The spin Hamiltonian parameters and covalency rates were evaluated. It was found that the V(4+) ions exist as vanadyl (VO(2+)) ions and are in an octahedral coordination with a tetragonal compression. The covalency rates (1 - α(2)) and (1 - γ(2)) indicate moderate covalency for the σ- and π-bonds. It was observed that the spin-Hamiltonian parameters depend slightly on the relative concentration of Bi(2)O(3). The optical properties of this glass system are studied from the optical absorption spectra recorded in the wavelength range 200-800 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The values of optical band gap for indirect allowed transitions have been determined using available theories. The direct current electrical conductivity, σ, has been measured in the temperature range 373-573 K. The conductivity decreases with the increase in Bi(2)O(3) concentration. This has been discussed in terms of the decrease in the number of mobile ions and their mobility. An attempt is made to correlate the EPR, optical, and electrical results and to find the effect of Bi(2)O(3) content on these parameters.  相似文献   

17.
1 INTRODUCTION There has been an increasing interest in the re- search of diode-pumped solid-state lasers in recent years because of the rapid development of high power diode lasers. The absorption peak of Nd3 ions at about 800 nm corresponding to 4I9/2→ 2H9/2 tran- sition is suitable for commercial laser diode GaAlAs pumping[1]. KLa(MoO4)2 is a kind of disordered crystalline host for lasing rare-earth ions[2], and it belongs to Scheelite (CaWO4) structure[3]. The disorder derives…  相似文献   

18.
The electrical resistivity of some Bi1?xSbx alloys containing 2–20% of antimony was measured in the temperature range 300–500 K. The measurements suggest that the behaviour of the electrical resistivity for all samples throughout the temperature range studied is semimetallic.  相似文献   

19.
The first heterobimetallic Bi:Sn alkoxide complexes [Bi(2)SnO(OCH(CF(3))(2))(5)(O(t)Bu)(3)(THF)] (1) and [BiSnO(OCH(CF(3))(2))(3)(O(t)Bu)(2)](2) (2) are described. The complexes were obtained through mixing and heating equimolar quantities of the component alkoxides, Bi(OCH(CF(3))(2))(3) and Sn(O(t)Bu)(4), under solvent-free conditions (1) and in THF (2). The solid-state structures were determined by single crystal X-ray diffraction showing ligand redistribution from Bi(III) to Sn(IV) in the two molecular species. Compound 2 behaves as a single-source precursor for the thermolytic formation of bismuth pyrostannate, Bi(2)Sn(2)O(7).  相似文献   

20.
社会经济快速发展的同时, 也带来了日益严峻的环境污染问题. 半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景. 作为最具有代表性的半导体光催化材料, TiO2因为其禁带宽度(3.2 eV)比较大, 只能被紫外光激发, 因而对太阳能的利用率较低. 作为一种最简单的含铋层状氧化物, Bi2WO6的禁带宽度(2.7 eV)相对较小, 可以部分利用太阳光中的可见光, 因而受到广大研究者的青睐. 但是, Bi2WO6光催化材料的可见光响应范围较窄, 仅能被波长小于450 nm的光激发, 且激发后的光生载流子容易复合, 导致光催化效率不高. 因此, 迫切需要对Bi2WO6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合, 来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi2S3@Bi2WO6纳米片, 充分利用Bi2S3优良的可见光响应性能和半导体异质结光催化剂的构建, 来提高Bi2WO6的光催化活性. 结果表明, 随着Na2S·9H2O用量从0增加到1.5 g, 所得催化剂的光活性不断提高, X3B的降解速率常数由0.40×10-3min-1增加到6.6×10-3min-1, 催化剂活性提高了16.5倍. 当进一步增加Na2S·9H2O的用量时(1.5-3.0 g), 复合催化剂的光活性下降. 这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi2S3+ Na2S = 2NaBiS2), 占据了催化剂的活性位点, 阻碍了染料分子与催化剂的直接接触. Bi2WO6@Bi2S3异质结纳米片光活性的提高, 可归因于Bi2S3的敏化作用极大拓展了复合催化剂的光响应范围; 另一方面, Bi2WO6和Bi2S3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离, 抑制了光生电子-空穴的复合, 从而提高了复合催化剂的催化效率. 本研究为其他半导体复合材料的原位生长制备提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号