首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cyanogen diluted in argon was reacted with laser ablated Zn atoms to produce the NCZnCN and NCZnZnCN cyanides and higher energy isocyanides ZnNC, CNZnNC, and CNZnZnNC, which were isolated in excess argon at 4 K. These reaction products, identified from the matrix infrared spectra of their ‐CN and ‐NC chromophore ligand stretching modes, were confirmed by 13C and 15N isotopic substitution and comparison with frequencies calculated by the B3LYP and CCSD(T) methods using the all electron aug‐cc‐pVTZ basis sets. The cyanide and isocyanide products were increased markedly by mercury arc UV photolysis, which covers the zinc atomic absorption. The above electronic structure calculations that produce appropriate ligand frequencies for these dizinc products also provide their Zn?Zn bond lengths: CCSD(T) calculations find a short 2.367 Å Zn?Zn bond in the NCZnZnCN cyanide, a shorter 2.347 Å Zn?Zn bond in the 37.4 kJ mol?1 higher energy isocyanide CNZnZnNC, and a longer 4.024 Å bond in the dizinc van der Waals dimer. Thus, the diatomic cyanide (‐CN) and isocyanide (‐NC) ligands are as capable of stabilizing the Zn?Zn bond as many much larger ligands based on their measured and our calculated Zn?Zn bond lengths. This is the first example of dizinc complexes stabilized by different ligand isomers. Additional weaker bands in this region can be assigned to the analogous trizinc molecules NCZnZnZnCN and CNZnZnZnNC.  相似文献   

2.
R.B. King  L. Borodinsky 《Tetrahedron》1985,41(16):3235-3240
The vinyl Isocyanides 2,4,6-(CH3)3C6H2CHCHNC and (CH3)3CCHCHNC and the new 1,3-dienyl isocyanide CH3CHCH(CH3)-CHCHNC have been prepared from the corresponding aldehydes and methyl isocyanide using a method first developed by Schöllkopf, Stafforst, and Jentsch. 5 The new vinyl isocyanides (CH3)2CCHNC and CH3CHC(CH3)NC have been prepared by the Cu2O-catalyzed isomerization of the corresponding allyl isocyanides The liquid vinyl isocyanides may be characterized by the formation of solid cis-(RNC)2Mo(CO)4 derivatives through reaction with norbornadienetetracarbonylmolybdenum in hexane solution at ambient temperature. Examination of these molybdenum carbonyl complexes by proton and carbon-13 NMR spectroscopy Indicates that the isocyanide carbon atom but not the carbon-carbon double bond of the vinyl 1socyanide ligands is bonded to the molybdenum atom. The proton-decoupled carbon-13 NMR spectra of the vinyl isocyanides, but not their molybdenum carbonyl complexes, indicate coupling of the isocyanide nitrogen to both the isocyanide carbon (1J(C-N)6 Hz. ) and the vinyl carbon bearing the isocyanide group (1J(C-N)11-13 Hz. ) leading to 1:1:1 triplets for these resonances. These vinyl carbonyl resonances are used to estimate the cis-trans isomer ratios in vinyl isocyanides of the type RCHCHNC. Such studies suggest that the formation of vinyl isocyanides by the copper(I) catalyzed isomerization of the corresponding allylic isocyanides is more nearly stereospecific than the formation of vinyl isocyanides by the elimination reaction of the Schollkopf/Stafforst/Jentsch synthetic method.  相似文献   

3.
Vibrational (IR and Raman) spectra for the metal-free phthalocyanine (H2Pc) have been comparatively investigated through experimental and theoretical methods. The frequencies and intensities were calculated at density functional B3LYP level using the 6-3 IG(d) basis set. The calculated vibrational frequencies were scaled by the factor 0.9613 and compared with the experimental result. In the IR spectrum, the characteristic IR band at 1008.cm^-1 is interpreted as C-N (pyrrole) in-plane bending vibration, in contrast with the traditional assigned N-H in-plane or out-of-plane bending vibration. The band at 874 cm^-1 is attributed to the isoindole deformation and aza vibration. In the Raman spectrum, the bands at 540, 566, 1310, 1340, 1425, 1448 and 1618 cm^-1 are also re-interpreted. Assignments of vibrational bands in the IR and Raman spectra are given based on density functional calculations for the first time. The present work provides valuable information to the traditional empirical assignment and will be helpful for further investigation of the vibration spectra of phthalocyanine analogues and their metal complexes.  相似文献   

4.
The Raman spectra of cis-2,3-dimethyloxirane and trans-2,3-dimethyloxirane in the vapor, liquid, and polycrystalline solid phases are reported for the region between 25 and 3100 cm?1. The IR spectra of these two compounds between 80 and 4000 cm?1 in the vapor and polycrystalline solid phases are also reported. In the IR and Raman spectra of gaseous trans-2,3-dimethyloxirane a total of eight torsional transitions have been observed. In the Raman spectrum of the cis compound in the vapor phase, four torsional transitions have been observed. From these experimental data, periodic barriers to the methyl torsional motions have been calculated to be 905 ± 7 cm?1 (2.5 kcal mol?1) for the trans molecule and 617 ±5 cm?1 (1.76 kcal mol?1) for the cis molecule. Additionally, complete vibrational assignments based on band contours, depolarization values, and group frequencies are proposed for both molecules and gas-phase thermodynamic functions have been calculated. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

5.
Mercury atoms, laser‐ablated from an amalgam dental filling target, react with cyanogen in excess argon during condensation at 4 K to form two major products in the 2200 cyanide M?C?N stretching region of the IR spectrum, which were assigned to NCHgCN and NCHgHgCN from their antisymmetric C?N stretching mode absorptions at 2213.8 and 2180.1 cm?1. Two broader bands in the isocyanide region at 2098.2 and 2089.6 cm?1 were assigned to CNHgNC and CNHgHgNC. The N‐bonded isomers were computed to be 603/33 and 823/69 times more intense IR absorbers than the C‐bonded isomers at the CCSD level of theory. The dissociation energy for the NCHg?HgCN molecule into two HgCN molecules was calculated to be 296 kJ mol?1 and that for CNHg?HgNC into two HgNC molecules is 304 kJ mol?1. These simple molecules with two cyanide or two isocyanide ligands have two of the shortest and strongest known Hg?Hg single bonds as the two electronegative CN ligands withdraw antibonding electron density from the bonding region.  相似文献   

6.
Low-frequency Raman spectra of solid anisole and of solid anisole-d3 have been recorded at 130 K. The phenyl torsion observed at 148 cm?1 is shifted to 133 cm?1 upon deuteration of the methyl group. The twofold torsional barriers calculated from these frequencies are 4033 ± 110 cm?1 and 4094 ± 123 cm?1 indicating that coupling to other low-frequency modes in both cases is of the same order of magnitude. The methyl torsional mode was observed at 285 cm?1 in the spectrum of solid anisole and at 183 cm?1 in the spectrum of anisole-d3. The threefold barriers calculated using these frequencies are 1847 ± 20 cm?1 and 1465 ± 18 cm?1 respectively. These barrier values indicate that the methyl torsion is coupled to another low-frequency mode. A doublet centered at 230 cm?1 in anisole is shifted to 245 cm?1 in anisole-d3; it is proposed that this is due to a ring mode coupled to the methyl torsion. The splitting is interpreted as an example of Davydov splitting.  相似文献   

7.
Mercury atoms, laser‐ablated from an amalgam dental filling target, react with cyanogen in excess argon during condensation at 4 K to form two major products in the 2200 cyanide M?C?N stretching region of the IR spectrum, which were assigned to NCHgCN and NCHgHgCN from their antisymmetric C?N stretching mode absorptions at 2213.8 and 2180.1 cm?1. Two broader bands in the isocyanide region at 2098.2 and 2089.6 cm?1 were assigned to CNHgNC and CNHgHgNC. The N‐bonded isomers were computed to be 603/33 and 823/69 times more intense IR absorbers than the C‐bonded isomers at the CCSD level of theory. The dissociation energy for the NCHg?HgCN molecule into two HgCN molecules was calculated to be 296 kJ mol?1 and that for CNHg?HgNC into two HgNC molecules is 304 kJ mol?1. These simple molecules with two cyanide or two isocyanide ligands have two of the shortest and strongest known Hg?Hg single bonds as the two electronegative CN ligands withdraw antibonding electron density from the bonding region.  相似文献   

8.
Cyanogen diluted in argon was reacted with laser ablated Zn atoms to produce the NCZnCN and NCZnZnCN cyanides and higher energy isocyanides ZnNC, CNZnNC, and CNZnZnNC, which were isolated in excess argon at 4 K. These reaction products, identified from the matrix infrared spectra of their -CN and -NC chromophore ligand stretching modes, were confirmed by 13C and 15N isotopic substitution and comparison with frequencies calculated by the B3LYP and CCSD(T) methods using the all electron aug-cc-pVTZ basis sets. The cyanide and isocyanide products were increased markedly by mercury arc UV photolysis, which covers the zinc atomic absorption. The above electronic structure calculations that produce appropriate ligand frequencies for these dizinc products also provide their Zn−Zn bond lengths: CCSD(T) calculations find a short 2.367 Å Zn−Zn bond in the NCZnZnCN cyanide, a shorter 2.347 Å Zn−Zn bond in the 37.4 kJ mol−1 higher energy isocyanide CNZnZnNC, and a longer 4.024 Å bond in the dizinc van der Waals dimer. Thus, the diatomic cyanide (-CN) and isocyanide (-NC) ligands are as capable of stabilizing the Zn−Zn bond as many much larger ligands based on their measured and our calculated Zn−Zn bond lengths. This is the first example of dizinc complexes stabilized by different ligand isomers. Additional weaker bands in this region can be assigned to the analogous trizinc molecules NCZnZnZnCN and CNZnZnZnNC.  相似文献   

9.
Infrared and Raman spectra of pentachlorophenol and pentachlorothiophenol have been measured and the fundamental frequencies assigned. The two-fold barrier to rotation of the —OH group in the former compound is found to be 2190 cm?1 (26.4 kJ mol?1)  相似文献   

10.
The IR (50–3500 cm?1) and Raman (20–3500 cm?1) spectra have been recorded for gaseous and solid dimethylethylamine. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. Due to the fact that three distinct Raman lines disappear on going from the fluid phases to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers in the fluid phases with the gauche conformer being more stable and the only one present in the spectra of the unannealed solid. From the temperature study of the Raman spectrum of the liquid a rough estimate of 3.9 kcal mol?1 has been obtained for ΔH. Relying mainly on group frequencies and relative intensities of the IR and Raman lines, a complete vibrational assignment is proposed for the gauche conformer. The potential functions for the three methyl rotors have been obtained, and the barriers to internal rotation for the two CH3 rotors attached to the nitrogen atom have been calculated to be 3.51 and 3.43 kcal mol?1, whereas the barrier for the CH3 rotor of the ethyl group has been calculated to be 3.71 kcal mol?1. The asymmetric torsional mode for the gauche conformer has been observed in both the IR and Raman spectra of the gas at 105 cm?1 with at least one hot band at a lower frequency. Since the corresponding mode has not been observed for the trans conformer, it is not possible to obtain the potential function for the asymmetric rotation although estimates on the magnitudes of some of the terms have been made. Significant changes occur in the low-frequency IR and Raman spectra of the solid with repeated annealing; several possible reasons for these changes are discussed and one possible explanation is that a conformational change is taking place in the solid where the trans form is stabilized by crystal packing forces. These results are compared to the corresponding quantities for some similar amines.  相似文献   

11.
The structural features of the 1H‐imidazo[4,5‐c]pyridine (ICPY) tautomers and homodimers of the most stable tautomers have been studied by quantum chemical methods. FTIR and Raman spectra of the ICPY were recorded in the range of 4000–60 cm?1 and 3500–5 cm?1. The predominant tautomer among four possible isomers of ICPY were determined. The optimized geometries and vibrational frequencies of possible ICPY tautomers and dimers were computed by B3LYP/DFT method with 6‐311++G(d,p) and 6‐31G(d) basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution (TED) and isotopic shifts. ICPY dimeric forms were also characterized according to their hydrogen bonding interactions, and it has been found that the most stable ICPY homodimer establishes moderate strong N ? H …N type hydrogen bond. 1H NMR, 13C NMR, and 15N NMR properties have been calculated for all tautomeric forms using the gauge independent atomic orbital (GIAO) method. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
Cadmium atoms from laser ablation react with cyanogen, NC=CN, in excess argon during co-deposition at 4 K, and even more on UV irradiation of the cold samples. Final annealing to 35 K increases bands at 2187.3 and 2089.2 cm−1 at the expense of weaker bands at 2194.6 and 2092.2 cm−1 through addition of another cadmium atom. Reaction products were identified by comparison with B3LYP and CCSD(T) computed frequencies and energies, through frequency differences between Zn and Cd products, and by cyanogen isotopic substitution. The CN radical, ZnNC, and CdNC were observed on sample deposition. Hg arc ultraviolet (UV) irradiation activates the insertion of Cd and Zn to form the NCCdCN, CNCdNC, NCZnCN and CNZnNC molecules. Next annealing increased the dimetal products NCCdCdCN, CNCdCdNC, NCZnZnCN, and CNZnZnNC at the expense of their single metal analogs. Laser ablated mercury amalgam also produced NCHgCN, NCHg−HgCN, CNHgNC and CNHg−HgNC. The Group12 metals form both cyanide and isocyanide products, and the argon matrix also traps the higher energy but much more intensely absorbing isocyanides. In the isocyanide case bond polarity results in very intense infrared absorptions. Group 12 metals produce shorter M−M bonds in the dimetal cyanides NCM−MCN and isocyanides CNM−MNC than in the M−M itself, and their computed M−M bond lengths compare favorably with those measured for dimetal complexes stabilized by large ring containing molecular ligands.  相似文献   

13.
In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine (4-HP). The FT-IR solid phase (4000–400 cm?1), FT-IR gas phase (5000–400 cm?1) and FT-Raman spectra (3500–50 cm?1) of 4-HP was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of 4-HP in the ground-state have been calculated by using the density functional methods (BLYP, B3LYP) with 6-311G (d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* antibonding orbitals and E (2) energies confirms the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra.  相似文献   

14.
The molecular–electronic structure of the metal phthalocyanines (Fe, Co, Ni and Cu) has been determined by the molecular orbital treatment. Coulomb integrals of the metal atom occurring in the secular determinants have been approximated equivalent to the valence state ionization energy (VSIE) of a metal orbital for a particular charge configuration. The calculated π-electron charge densities have been found to be higher on the nitrogen atoms as compared to the other atoms in the molecule. This is in agreement with the e.s.r. studies of the metal phthalocyanines. To test the correctness of the molecular orbital calculations, the π-π* transitions (14,000 cm?1 ? 30000 cm?1), d-d* transitions (20000 cm?1 ? 60000 cm?1) and charge transfer transitions (15000 cm ?1 ? 30000 cm?1) have been calculated in the metal phthalocyanine molecules. The calculated frequencies have been compared with the observed ones and found in fair agreement.  相似文献   

15.
The intramolecular hydrogen bond, molecular structure, and vibrational frequencies of α‐chloro acetylacetone have been investigated. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were recorded in the regions 400–4,000 cm?1 and 50–4,000 cm?1, respectively. Rigorous normal coordinate analysis has been performed at the B3LYP/6‐311++G** level of theory for purposes of comparison. The complete vibrational assignment for TFAA has been made on the basis of the calculated potential energy distribution. We also applied the atoms in molecules theory and natural bond orbital method for the analysis of the hydrogen bond in α‐Chloro acetylacetone and acetylacetone. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
Primary amines react with a variety of cationic and neutral iron isocyanide complexes to yield structural and rotational diaminocarbene isomers characterized by variable temperature 1H and 13C NMR spectra. Structural isomers result from the conversion of amines to isocyanide ligands via the base-catalyzed nucleophilic attack of initially formed diaminocarbenes on cis isocyanides substituents, the effect on isomer populations is often marked. Factors influencing structural and rotational isomeric preferences are discussed.  相似文献   

17.
The Raman spectra of gaseous and liquid (SiH3)2NCH3 and (SiH3)2NCD3 have been recorded to within 10 cm?1 of the exciting line. The IR spectra of (SiH3)2NCH3 and (SiH3)2NCD3 have been recorded from 80 cm?1 to 3800 cm?1 in the gaseous state, and from 80 cm?1 to 450 cm?1 in the solid state. A vibrational assignment has been made, and from the low-frequency vibrational data, an upper limit of 3.3 kcal mol?1 was calculated for the barrier to internal rotation of the silyi groups, whereas a barrier of ~450 cal was calculated for internal rotation of the methyl group. It is concluded that there exists a significantly strong dπpπ interaction in methyldisilylamine.  相似文献   

18.
We report the infrared, Raman, and surface‐enhanced Raman scattering (SERS) spectra of triruthenium dipyridylamido complexes and of diruthenium mixed nickel metal‐string complexes. From the results of analysis on the vibrational modes, we assigned their vibrational frequencies and structures. The infrared band at 323–326 cm?1 is assigned to the Ru3 asymmetric stretching mode for [Ru3(dpa)4Cl2]0–2+. In these complexes we observed no Raman band corresponding to the Ru3 symmetric stretching mode although this mode is expected to have substantial Raman intensity. There is no frequency shift in the Ru3 asymmetric stretching modes for the complexes with varied oxidational states. No splitting in Raman spectra for the pyridyl breathing line indicates similar bonding environment for both pyridyls in dpa , thus a delocalized structure in the [Ru3]6–8+ unit is proposed. For Ru3(dpa)4(CN)2 complex series, we assign the infrared band at 302 cm?1 to the Ru3 asymmetric stretching mode and the weak Raman line at 285 cm?1 to the Ru3 symmetric stretching. Coordination to the strong axial ligand CN weakens the Ru‐Ru bonding. For the diruthenium nickel complex [Ru2Ni(dpa)4Cl2]0–1+, the diruthenium stretching mode νRu‐Ru is assigned to the intense band at 327 and 333 cm?1 in the Raman spectra for the neutral and oxidized forms, respectively. This implies a strong Ru‐Ru metal‐metal bonding.  相似文献   

19.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

20.
The infrared spectra of maleimide as a vapour (160°C), melt (100°C), oriented polycrystalline film, pellet and when dissolved in various solvents were recorded between 4000 and 400 cm?1. Also certain spectra in the far infrared region 400-40 cm?1 were obtained. Raman spectra of the crystalline solid, melt and as a saturated solution in acetonitrile were recorded and semiquantitative polarization measurements carried out. For N-D maleimide infrared and Raman spectra of the solid compound were recorded.The fundamental frequencies have been assigned in terms of C2v, symmetry on the basis of infrared vapour contours and dichroism of the oriented film as well as on Raman polarization data. A force field was derived for maleimide, by initially transferring force constants from maleic anhydride and subsequent refinement of the force constants. The agreement between observed and calculated frequencies for the in-plane modes was satisfactory whereas certain large discrepancies remained for the out-of-plane vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号