首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PbO_2/Co_3O_4 composites were prepared on a Ti substrate by means of a composite electrodeposition method in Pb~(2+) plating solution containing dissolved nano-Co_3O_4 particles. X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and transmission electron microscopy(TEM) were used to characterize the chemical composition and morphology of the PbO_2/Co_3O_4 composites. The electrochemical and capacitance performance of the composites were investigated by cyclic voltammetry(CV), charge-discharge tests and electrochemical impedance(EIS). The results indicate that the composites comprise rutile phase Co_3O_4 and β-PbO_2. In addition, the surface of the composite electrode is rough and porous. The PbO_2/Co_3O_4 composites exhibit a high specific capacitance up to 215 F/g, which is ten times higher than that of the pure-PbO_2 and two times higher than that of the pure-Co_3O_4 in 1 mol/L NaOH electrolytes.  相似文献   

2.
The objectives of the present research are synthesizing three-dimensional (3D) nickel nanostructures and investigating their magnetic properties. Thus a template-free method was used to prepare 3D dandelion-like nickel nanostructures via reducing of nickel chloride with hydrazine hydrate in ethylene glycol solution at 100 ℃. The resulting Ni nanostructures were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area electron diffraction (SAED). And the magnetic properties of the 3D Ni nanostructures were measured as well. Results indicated that solvothermal process could be successfully used to prepare 3D dandelion-like nanostructures of Ni at a relatively mild temperature of 100℃. And the conclusions were made as follows: as-prepared Ni samples had obvious shape anisotropy and were composed of fine nanocrystallites, while they had significantly enhanced ferromagnetic properties than bulk Ni and Ni nanoparticles.  相似文献   

3.
Nanobelts, flower-like and rhizoid-like nanostructures of pure polyaniline (PANI) doped with sulfuric acid or hydrochloric acid were prepared via electrospinning by using a coagulation bath as the collector after optimizing the fabrication parameters. The morphologies of these nanostructures were characterized by scanning electron microscope (SEM). The possible formation mechanisms were discussed.  相似文献   

4.
The Eu^3+:BaMoO4 nanostructures were synthesized by a simple hydrothermal method,and characterized by XRD,transmission electron microscopy,high-resolution transmission electron microscopy,excitation and emission spectra. Eu^3+:BaMoO4 nanostructures show a lotus leaf-shaped morphology,and exhibit a strong red emission at 612 nm,which may afford an opportunity for the development of other nanostructure materials.  相似文献   

5.
DNA nanotechnology utilizes DNA double strands as building units for self-assembly of DNA nanostructures.The specific base-pairing interaction between DNA molecules is the basis of these assemblies.After decades of development,this technology has been able to construct complex and programmable structures.With the increase in delicate nature and complexity of the synthesized nanostructures,a characterization technology that can observe these structures in three dimensions has become necessary,and developing such a technology is considerably challenging.DNA assemblies have been studied using different characterization methods including atomic force microscopy(AFM),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).However,the three-dimensional(3D)DNA assemblies always collapse locally due to the dehydration during the drying process.Cryogenic electron microscopy(cryo-EM)can overcome the challenge by maintaining three-dimensional morphologies of the cryogenic samples and reconstruct the 3D models from cryogenic samples accordingly by collecting thousands of two-dimensional(2D)projection images,which can restore their original morphologies in solution.Here,we have reviewed several typical cases of 3D DNA-assemblies and highlighted the applications of cryo-EM in characterization of these assemblies.By comparing with some other characterization methods,we have shown how cryo-EM promoted the development of structural characterization in the field of DNA nanotechnology.  相似文献   

6.
Hierarchical Ni Co_2O_4/PANI/CNTs hybrid composites were designed and fabricated having a layer of Ni Co_2O_4 on the surface of PANI encapsulated CNTs with different morphologies. Physicochemical attributes of the synthesized composites were examined by FTIR, UV–visible and X-ray diffraction(XRD)techniques. Morphological aspects were evaluated by field-emission scanning microscopy(FESEM),electron diffraction spectroscopy(EDS), high resolution transmission electron microscopy(HRTEM) and selected area electron diffraction(SAED) studies. Electrochemical measurements revealed an improved specific capacitance of 2250 F/g at a scan rate of 5 m V/s and 2000 F/g at a current density of 1 A/g with good rate capability using a three-electrode system. These enhanced features are achieved from the well designed nanostructure and the synergistic contributions of individual components in the electrode material.  相似文献   

7.
We designed and constructed a new family of 608 dendritic dipyridyl donors, from which two novel triangular metallodendrimers were successfully prepared via coordination-driven self-assembly.Inspired by the existence of multiple intermolecular interactions(e.g., p–p stacking and CH–p interactions) imposed by the DMIP-functionalized poly(benzyl ether) dendrons, their hierarchical selfassembly behaviors were studied in various mixed solvents by using scanning electron microscopy(SEM). Interestingly, it was found that the morphologies of the obtained metallodendrimers were highly depended on the dendron generation. For example, the first-generation metallodendrimer was able to hierarchically self-assemble into the spherical nanostructures in various mixed solvents. However, the nanofibers were observed for the second-generation metallodendrimer under the similar conditions.Furthermore, the driven force for the formation of such ordered nanostructures was investigated by using1 H NMR and fluorescence spectroscopy.  相似文献   

8.
Dendritic polyaniline nanofibers and submicrometer-sized fibers have been synthesized by chemical oxidative polymerization of aniline (An) doped with salicylic acid (SA). The diameters of the fibers could be controlled easily from 30 to 400 nm by varying the concentration of aniline and salicylic acid at room temperature. Scanning electron microscopy (SEM) and typical transmission electron microscopy (TEM) were applied to investigate their morphologies. . Fourier transform infrared (FTIR) spectrum indicated that the state of the dendritic polyaniline fibers is emerialdine rather than solely the leucoemeraldine or permigraniline forms. The dendritic polyaniline fibers have potential applications as chemical sensors or actuators and neuron devices.  相似文献   

9.
A simple and efficient approach is developed to fabricate single-crystalline CuO nanostructures through an ionic liquid assisted one-step low-temperature solid-state route.Both nanoparticles(5 nm in size)and nanorods(5-10 nm in diameter and 50-100 nm in length)of monoclinic CuO were obtained. These synthesized CuO nanostructures were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),selected area electron diffraction(SAED),X-ray photoelectron spectros- copy(XPS),energy dispersive spectroscopy(EDS)and nitrogen adsorption analysis.The morpholo- gies of the nanostructures can be controlled by tuning the amount of NaOH and ionic liquids.The growth mechanism of CuO nanostructures is investigated.  相似文献   

10.
A solvothermal process was developed for the preparation of cauliflower-like Bi2S3 from N,N-dimethylformamide (DMF) solution of bismuth nitrate [Bi(NO3)3.5H2O] and thioacetamide (TAA) with 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) as the morphology-controlling agent. The obtained Bi2S3 products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), etc. The sensing properties of Bi2S3 with different morphologies were evaluated by the electrochemical analysis of dopamine (DA) and ascorbic acid (AA) coexisting solution. The results showed that cauliflower-like Bi2S3 showed a better resolving ability than rod-like Bi2S3 for the simultaneous determination of DA and AA,  相似文献   

11.
Monodispersed colloidal copper oxide nanoparticles were synthesized by water-in-oil microemulsion using CuCl 2·H2O and NaOH.The effect on CuO particle size was studied by varying the water-to-surfactant molar ratio,precursor concentration and molar ratio of NaOH to CuCl2.The morphology,size and size distribution of the particles were studied by transmission electron microscopy and dynamic light scattering.Dispersion destabilization of the colloidal copper oxide nanoparticles was detected by a Turbiscan apparatus.CuO/γ-Al2O3 catalysts were prepared by dispersing highly stable CuO nanoparticles on γ-alumina by mechanical stirring.The catalysts were analyzed by scanning electron microscopy,transmission electron microscopy,X-ray photoelectron,and X-ray diffraction,which confirmed the uniform dispersion of CuO on the support.The reduction of the nitro aromatic compounds,4-nitrophenol,3-nitrophenol,and 2-nitrophenol,were studied.The CuO/γ-Al2O3 catalysts were active for the reduction of these nitro aromatic compounds.  相似文献   

12.
Monodispersed colloidal copper oxide nanoparticles were synthesized by water-in-oil microemulsion using CuCl 2·H2O and NaOH.The effect on CuO particle size was studied by varying the water-to-surfactant molar ratio,precursor concentration and molar ratio of NaOH to CuCl2.The morphology,size and size distribution of the particles were studied by transmission electron microscopy and dynamic light scattering.Dispersion destabilization of the colloidal copper oxide nanoparticles was detected by a Turbiscan apparatus.CuO/γ-Al2O3 catalysts were prepared by dispersing highly stable CuO nanoparticles on γ-alumina by mechanical stirring.The catalysts were analyzed by scanning electron microscopy,transmission electron microscopy,X-ray photoelectron,and X-ray diffraction,which confirmed the uniform dispersion of CuO on the support.The reduction of the nitro aromatic compounds,4-nitrophenol,3-nitrophenol,and 2-nitrophenol,were studied.The CuO/γ-Al2O3 catalysts were active for the reduction of these nitro aromatic compounds.  相似文献   

13.
贾潇  岳芳  杨光  潘海波  刘文革 《结构化学》2014,33(10):1472-1478
CoO nanostructures with tunable morphology and size have been prepared via a simple one-pot solvothermal synthesis. The as-prepared nanoparticles were fully characterized using X-ray diffraction(XRD), transmission electron microscopy(TEM), field-emission scanning electron microscope(FESEM), etc. The morphology and size of the product can be easily controlled by adjusting the raw materials added. Reaction time and the solvent ratio also play important roles in the synthesis of octahedral nanostructures. The magnetic property of the as-prepared samples was also investigated.  相似文献   

14.
Monodispersed magnetite Fe3O4 and hematite α-Fe2O3 nanocrystals have been grown in co-solvents of alcohol and water. Either the shape or the size of the nanocrystals could be easily controlled. Both the phases and nanostructures have been characterized by powder X-ray diffraction patterns and electron microscopy. The magnetic and catalytic properties of these products were investigated and compared with each other. The obtained results clearly demonstrate that these iron oxide nanocrystals are soft ferromag...  相似文献   

15.
BiOCl nanostructures including microspheres,microflowers,microplates,and nanoplates,have been synthesized by a simple solvothermal method using bismuth nitrate and sodium chloride as raw materials without adding any additives.Structure and morphology of the products were characterized by powder X-ray diffraction,scanning electron microscopy,and transmission electron microscopy.The results indicated that the as-prepared microspheres and microflowers were composed of nanosheets.Although with different shape and lateral size,the nanoplates and microplales were all single-crystalline plates with exposed {001) facets.It was found that the volume ratio of polyethylene glycol 400 and H2O in the solvent played a key role in the morphology of the products,and the possible growth mechanism was also discussed.The photocatalytic measurements indicated that the BiOCl samples exhibit good photocatalytic properties towards Rhodamine B.  相似文献   

16.
Cu2O particles with different morphologies and scales were prepared sonochemically on the solid-liquid interface of CuCl and water, by adjusting the reaction factors. The products were characterized by powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The formation and morphology of Cu2O crystals were influenced by high-intensity ultrasound, reaction temperature, and addition of CuCl. The results indicate that micrometer Cu2O was crystallized in cubic and octahedral shapes, whereas, nanometer Cu2O was not produced in well-shaped crystals.  相似文献   

17.
In this protocol, Ag supported on the hydroxyapatite-core–shell magnetic γ-Fe_2O_3nanoparticles(γFe_2O_3@HAp-Ag NPs) as a novel, efficient, and magnetically recyclable catalyst is synthesized, and characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), and vibrating sample magnetometry(VSM). The use of the catalyst is described in the synthesis of coumarin derivatives by the Pechmann condensation of various phenols with β-ketoesters under solvent- and halogen-free conditions at 80℃.This novel and inexpensive method offers advantages, such as recyclability simple experimental protocol, short reaction time, minimal work-up procedure, and excellent yields of products, together with desirable, eco-friendly, green aspects by avoiding toxic elements and solvents, and ease of recovery from the reaction mixture using an external magnet.  相似文献   

18.
Flower-like aggregates composed of (4.0±0.8) nm palladium(Pd) nanoparticles were prepared via ultrasonics in the palladium(Ⅱ) chloride(PdCl2) H2O/EtOH(5/1,volume ratio) solution with the addition of a quantity of poly(vinyl pyrrolidone)(PVP) and sodium dodecyl sulfonate(SDS).The morphologies,crystal structures and the optical properties of the flower-like Pd nanostructures were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),selected area electron diffraction(SAED) and UV-visible absorption spectroscopy,respectively.The mechanism of sonochemical reduction of Pd(Ⅱ) ions was also investigated.The results show that the molar ratio of PVP to SDS affected the formation of the flower-like aggregates of Pd nanoparticles.Moreover,the electrocatalytic properties of Pd aggregates modified glassy carbon electrode for ethanol oxidation were also investigated by cyclic voltammetry(CV).This material exhibits remarkable electrocatalytic activity for ethanol oxidation in 1 mol/L KOH and appears as a promising candidate to be applied in direct ethanol fuel cells.  相似文献   

19.
水热法制备氢氧化镍纳米线   总被引:8,自引:0,他引:8  
田周玲  矫庆泽 《无机化学学报》2004,20(12):1449-1452
Nickel hydroxide nanowires were prepared by hydrothermal method. The products were characterized by powder X-ray diffraction(XRD) and transmission electron microscopy(TEM). The results show that the morphology of nickel hydroxide nanowire is mainly straight. The diameters of the nanowires are about 20~30 nm and the lengths reach several micronmeters. The effects of hydrothermal reaction time and filling factor on the morphologies and structure of the products were studied. The formation mechanism for nickel hydroxide nanowires is also discussed.  相似文献   

20.
β-Co(OH)2 with three-dimensional (3-D) structures was prepared by a simple hydrothermal method. It was found that the amount of cetyltrimethylammonium bromide (CTAB), the pH value, and the reaction time all had an important influence on the formation of this morphology. The products were characterized by X-ray diffraction, energy-dispersive X-ray analysis, and scanning electron microscopy. A possible mechanism of the formation of the 3-D microstructures of β-Co(OH)2 was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号